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Abstract

The convergence of a Smoothed Particle Hydrodynamics (SPH) scheme is a grand chal-

lenge problem. In SPH, the accuracy (and sometimes the rate of convergence) is shown

by comparing the solution with established solutions or using exact solutions. However,

the convergence achieved is poor. In this work, we propose techniques to construct a

Lagrangian, second-order convergent, weakly-compressible SPH (WCSPH) scheme. We

systematically study various aspects of SPH approximation, viz. type of kernel, smooth-

ing radius, discretization formulation, and kernel gradient correction to identify the root

cause of the problem of lack of convergence. We compare various discretization formu-

lations proposed in the SPH literature and identify operators that show convergence. We

then construct a scheme using convergent discretizations and compare it with the existing

schemes in the literature by solving the Taylor-Green problem. We then investigate the

e↵ect of the speed of sound on the convergence of the scheme and recommend the criteria

to set the artificial speed of sound. We then solve inviscid problems like the Gresho-Chan

vortex and the incompressible shear layer to demonstrate the conservation properties of

the newly proposed and existing schemes. We propose variations of the newly proposed

scheme such that they use the transport velocity or an Eulerian formulation while still

showing convergence.

Subsequently, we focus on the e�ciency of the entire process to obtain the order

of convergence. This process is a part of the verification of a code. The method of ex-

act solutions and comparison with existing solutions requires a lot of computational time.

Furthermore, if the solution diverges, these methods do not give insight into specific prob-

lems in the code. Moreover, these methods are inconclusive while comparing the conver-

gence of boundary condition implementations. We propose the method of manufactured

solutions (MMS) for SPH. For the first time, we use MMS in the context of a general

Lagrangian WCSPH code. We propose a set of instructions to construct manufactured so-

lutions to verify Lagrangian implementations. We demonstrate the use of MMS to obtain

the convergence of all the proposed schemes. The MMS requires much less computation

time than the time taken by the state-of-the-art techniques employed in the SPH literature.
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x Abstract

We also demonstrate the use of MMS to obtain convergence for extremely high-resolution

and three-dimensional problems, which is very di�cult with traditional methods.

We extend the method to verify the convergence of solid wall and inflow/outflow

boundary condition implementations. However, in the presence of an arbitrarily-shaped

solid, the particles placed on a Cartesian grid do not capture the features of the geometry

properly. We propose a novel particle packing technique that simultaneously arranges

the solid and fluid particles around the solid boundary surface such that the geometric

features are captured while the particle density is uniform. We use this packing technique

to generate test cases to verify solid boundary conditions.

We propose various manufactured solutions for the Neumann pressure, slip, and no-

slip boundary conditions for di↵erent shapes of the solid boundary, viz. straight, concave,

and convex. We also propose di↵erent MSs for inflow and outflow boundary conditions.

We use these MSs to verify, for the first time, the convergence of various existing bound-

ary condition implementations in SPH literature. In the case of inflow and outflow, we

propose modified implementations that show convergence in the presence of a wave trav-

eling across the fluid-outlet interface. We finally put together all the second-order conver-

gent discretizations and boundary implementations and propose a complete second-order

convergent scheme. This new scheme can simulate a wind tunnel-like simulation with an

arbitrarily-shaped solid downstream of the flow with high accuracy. We demonstrate the

accuracy achieved by simulating the flow past a circular cylinder.
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Chapter 1

Introduction

The Smoothed Particle Hydrodynamics (SPH) method was independently developed by

Gingold et al. (1977) and Lucy (1977) to simulate astrophysical systems. Since then, it

has been used to simulate many fluid and structures problems (Violeau et al., 2016). One

of the main advantages of the SPH method is that it can be parallelized easily. As a result,

recently it has gained a lot of attention due to rapid development in graphical processing

units for general-purpose computing. In the next section, we introduce the SPH method

in detail.

1.1 The SPH method
The SPH method can be used for continuous interpolation as well as a discrete approx-

imation. Consider a function f defined in the domain ⌦ and boundary @⌦. The spatial

convolution of the function f with the Dirac delta distribution �̃ is given by

f (x) =
Z

⌦

f (x̃)�̃(x � x̃)dnx̃, (1.1)

where x, x̃ 2 ⌦ is the domain and dnx̃ denotes the infinitesimal volume element, where

n is the dimension of the space ⌦. The eq. (1.1) reconstructs the field exactly. However,

for practical applications, the Dirac delta distribution is replaced by a smoothing kernel

W. The modified interpolation reconstructs the function f by using a convolution with a

smooth kernel function, given by

f (x) =
Z

⌦

f (x̃)W(x � x̃, h)dnx̃ + O(h2), (1.2)

where W(x� x̃, h) is a compact kernel function and h is the support radius of the kernel 1.

The kernel has a non-zero value up to the radius kh, where k is a constant parameter. In
1See derivation in appendix A.4.1.
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2 Introduction

order to reproduce the given function with O(h2) accuracy, the kernel function must be

symmetric such that

W(x � x̃) = W(x̃ � x), (1.3)

and Z

⌦

W(x � x̃, h)dnx̃ = 1. (1.4)

From the above conditions, we obtain
Z

⌦

rW(x � x̃, h)dnx̃ = 0. (1.5)

Additionally, we assume the kernel boundary does not intersect with the domain bound-

ary. The interpolation in eq. (1.2) can be applied to obtain the gradient of the field f ,

given by

r f (x) =
Z

@⌦

r f (x)W(x � x̃, h)n(x̃)ds̃ +
Z

⌦

f (x)rW(x � x̃, h)dnx̃ + O(h2), (1.6)

where n(x̃) is the normal at x̃, ds̃ is the infinitesimal surface at x̃ on the boundary @⌦ 2. The

first term in eq. (1.6) is equal to zero for a kernel completely inside the domain boundary

resulting in

r f (x) =
Z

⌦

f (x)rW(x � x̃, h)dnx̃ + O(h2). (1.7)

We note that we do not consider the variation due to the change of smoothing radius in

the present work. However, the change in smoothing radius can be accommodated by

additional terms in the kernel gradient evaluation (Bonet et al., 2005; Muta et al., 2022).

Popular choices for the kernel in the SPH community are

1. Gaussian (Gingold et al., 1977), given by

W(q) = ↵e�q2
, (1.8)

where q = |x � x̃|/h and ↵ is a normalizing factor such that ↵
R

W(q)dq = 1 is

satisfied.

2. Cubic spline (Monaghan et al., 1985), given by

W(q) = ↵

8>>>>>>>><
>>>>>>>>:

1 � 3
2q2 + 3

4q3 0  q  1,
1
4 (2 � q)3 1 < q  2,

0 2 < q.

(1.9)

2See derivation in appendix A.4.2.
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Figure 1.1 : Plots of some of the widely used SPH kernels.

3. Quintic spline (Morris, 1996), given by

W(q) = ↵

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(3 � q)5 � 6(2 � q)5 + 15(1 � q)5 0  q  1,

(3 � q)5 � 6(2 � q)5 1 < q  2,

(3 � q)5 2 < q  3,

0 3 < q.

(1.10)

4. Class of Wendland kernels (Wendland, 1995), where the 4th order kernel is given

by

W(q) = ↵

8>>>><
>>>>:

⇣
1 � q

2

⌘4
(1 + 2q) 0  q  2,

0 2 < q.
(1.11)

More details of various other kernels developed in the SPH literature can be found in the

book (p. 102) by Liu et al. (2003). In fig. 1.1, we plot all the normalized kernels functions,

including Wendland kernels of order 2 and 6 with the change in q.

1.2 Discrete SPH approximation
In the continuous approximation, all of these kernels are O(h2) accurate (see ap-

pendix A.4.1 and appendix A.4.2). In order to approximate an arbitrary field numeri-

cally, the domain is discretized into particles with local inter-particle separation �s, and

carrying the required properties like velocity, pressure etc. as shown in fig. 1.2.
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Figure 1.2 : Example of a discretized domain with a kernel.

We define the particle density  , given by

 i =
X

j2N(i)

mjW(xi � x j, h), (1.12)

where mj is the mass of the jth particle, N is the set of indices of the particles within

the support radius of the kernel. For brevity, we denote
P

j2N(i) as
P

j. We denote the

cardinality n(N) of the set N as Nnbr. Therefore, Nnbr is the number of neighbor particles

of the ith particle. The number density � of a particle is given by

�i =
X

j

W(xi � x j, h). (1.13)

Therefore, the volume of a particle ! is defined as

!i =
1
�i
=

mi

 i
. (1.14)

In SPH, the integral in eq. (1.2) is approximated using a single point quadrature,

given by

f (xi) ⇡
X

j

f (x j)W(xi � x j, h)! j. (1.15)

Similarly, the gradient of an arbitrary field in eq. (1.7) is approximated as

r f (xi) ⇡
X

j

f (x j)riW(xi � x j, h)! j, (1.16)

where riW(xi � x j, h) is the gradient of the smoothing kernel w.r.t. xi.

On discretizing the domain, in addition to the O(h2) error, a new error is introduced

due to the numerical quadrature (Quinlan et al., 2006), given by

r f (xi) = hr f (x)ii + O(h2) + | f (xi)|O
0
BBBB@
 
�x
h

!�+11CCCCA , (1.17)

where h•ii denotes the discrete SPH approximation in eq. (1.16), �x is the particle spacing

along the coordinate axis, and � is the smoothness of the kernel at the edge of its support 3.
3See derivation in appendix A.4.5.
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The value of � + 1 is defined as the first non-zero derivative of the kernel at the edge of

its support. For example, � = 2 for cubic spline kernel, and � = 4 for quintic spline

kernel. The ratio h
�x is called the scaling factor denoted by h�x. From eq. (1.17), we

can see that the value of h�x must be greater or equal to one for accurate approximation.

Furthermore, for a particular �x, the first term suggests decreasing the scaling factor,

whereas the second term suggests increasing the scaling factor. Therefore, one needs to

find an optimum value of the scaling factor that results in a lower error.

The error terms shown in eq. (1.17) corresponds to a particle distribution on a Carte-

sian grid with �x spacing. In the Cartesian arrangement of particles, each particle in the

domain has exactly the same configuration of neighboring particles. However, the error

may increase when the particles are not uniformly spaced. Consider a small random per-

turbation d̃i of the ith particle from a Cartesian arrangement, the modified approximation 4

is given by

r f (xi) = hr f (x)ii + O(h2) + | f (xi)|O
0
BBBB@

d̃i

h2

 
�x
h

!��11CCCCA , (1.18)

where d̃i = |d̃i|. We note that the last term has f (xi) factor making the approximation

unable to reproduce a constant function (Fatehi et al., 2011). In the next section, we will

discuss di↵erent discretizations used in the SPH literature that have been proposed for

improved accuracy of the operators like gradient, divergence, and Laplacian.

1.3 SPH discretization of operators
In general, a partial di↵erential equation involves operators like the gradient, divergence,

Laplacian, and other higher-order derivatives. In this work, we focus on incompressible

fluid flow problems. These flows are governed by the incompressible Navier-Stokes (NS)

equations, given by

r · u = 0,
du
dt
= �rp

⇢
+ ⌫r2u,

(1.19)

where u and p are the velocity and pressure and ⌫ and ⇢ are the kinematic viscosity and

density of the fluid, respectively. The NS equations involve the divergence of velocity,

pressure gradient, and Laplacian of velocity. In the next sections, we discuss various SPH

discretization proposed to discretize operators present in eq. (1.19).
4See derivation in appendix A.4.6.
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1.3.1 Divergence discretization

Monaghan (1994) proposed the simplest method to exactly approximate the diver-

gence of a constant velocity field, given by

hr · uii =
X

j

(u j � ui) · rWi j! j, (1.20)

where rWi j = riW(xi � x j, h). Similarly, some authors (Monaghan, 2005; Sun et al.,

2019) use the discretization, given by

hr · uii =
X

j

(u j + ui) · rWi j! j. (1.21)

Equation (1.21) is also called an asymmetric approximation i.e. hruii! j = hrui j!i

whereas eq. (1.20) is a symmetric formulation i.e. hruii! j = � hrui j!i. Since we con-

sider only the constant mass of each particle, these discretizations do not a↵ect mass

conservation. However, the divergence approximation is sometimes required to be the

adjoint of the gradient approximation when symplectic (volume preserving) integrators

are employed for time integration (see Violeau (2012) for more details).

1.3.2 Gradient discretization

Monaghan et al. (1983) proposed the discretization for the pressure force term, given

by *rp
⇢

+

i
=

X

j

m j

0
BBBBB@

pj

⇢2
j
+

pi

⇢2
i

1
CCCCCArWi j. (1.22)

The above formulation is symmetric i.e.
Drp
⇢

E
i! j
= �

Drp
⇢

E
j!i

. Therefore, the force on the

particles is equal and opposite. Therefore, eq. (1.22) conserves the linear momentum of

the system. Furthermore, Bonet et al. (1999) proved that the formulation in eq. (1.22) is

variationally consistent and conserves the angular momentum of the system. However, the

force of a constant pressure field does not vanish when eq. (1.22) is employed. Monaghan

(1992) proposed the zero-order accurate gradient approximation, given by

hrpii =
X

j

(pj � pi)rWi j! j. (1.23)

Equation (1.23) can be written in a conservative form, given by

hrpii =
X

j

(pj + pi)rWi j! j. (1.24)

Equation (1.20) and eq. (1.24) are skew-adjoint 5 Similarly, eq. (1.21) and eq. (1.23) are

skew-adjoint.
5See derivation in appendix A.1.
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Fatehi et al. (2011) show that the zero-order discretization in eq. (1.23) has errors of

order

|rpi|
2
66664O

0
BBBB@
 
�x
h

!�+11CCCCA + O
0
BBBB@
d̃i

h

 
�x
h

!�+11CCCCA
3
77775 , (1.25)

where the particles are irregularly arranged 6. In order to improve the accuracy, Bonet et

al. (1999) proposed a kernel-gradient correction such that the gradient of a linear function

is captured exactly 7. The correction matrix is given by

Bi =

0
BBBBBB@
X

j

rWi j ⌦ (x j � xi)! j

1
CCCCCCA

�1

. (1.26)

The kernel gradient is multiplied by the correction matrix to obtain a corrected gradient

approximation, given by

hrpii =
X

j

(pj � pi)BirWi j! j. (1.27)

The error for the formulation in eq. (1.27) is |r2 pi|O
✓
d̃i

⇣
�x
h

⌘�+1
◆

(see appendix A.4.6). Liu

et al. (2006) proposed another correction using the Taylor-series expansion ensuring the

consistency of both constant and linear function approximation 8. The correction matrix

is obtained by solving a linear system given by
2
666666666666666666664

P
l Wkl!l

P
l xlkWkl!l

P
l ylkWkl!l

P
l zlkWkl!l

P
l Wkl,x!l

P
l xlkWkl,x!l

P
l ylkWkl,x!l

P
l zlkWkl,x!l

P
l Wkl,y!l

P
l xlkWkl,y!l

P
l ylkWkl,y!l

P
l zlkWkl,y!l

P
l Wkl,z!l

P
l xlkWkl,z!l

P
l ylkWkl,z!l

P
l zlkWkl,z!l

3
777777777777777777775

2
666666666666666666664

fk

fk,x

fk,y

fk,z

3
777777777777777777775

=

2
666666666666666666664

P
l flWkl!l

P
l flWkl,x!l

P
l flWkl,y!l

P
l flWkl,z!l

3
777777777777777777775

,

(1.28)

where Wkl,� =
@Wkl
@� and fk,� =

@ fk
@� , where � 2 {x, y, z} are the kernel and function partial

derivatives in the � direction, fk = f (xk), and xi j = xi � x j, yi j = yi � y j, zi j = zi � z j.

On solving eq. (1.28), we obtain a first order consistent function and its gradient. In a

similar manner, Rosswog (2015) and Huang et al. (2019) proposed kernel gradient-free

corrections for the gradient approximation 9. They employed the first moment of the

kernel instead of the kernel gradient. The correction matrix proposed by Huang et al.
6See discussion in appendix A.4.6.
7See derivation in appendix A.3.1.
8See derivation in appendix A.3.2.
9See derivation in appendix A.3.3.
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(2019) is given by
2
666666666666666666664

P
l Wkl!l

P
l xlkWkl!l

P
l ylkWkl!l

P
l zlkWkl!l

P
l Wkl!l

P
l xlkWklxkl!l

P
l ylkWklxkl!l

P
l zlkWklxkl!l

P
l Wklykl!l

P
l xlkWklykl!l

P
l ylkWklykl!l

P
l zlkWklykl!l

P
l Wklzkl!l

P
l xlkWklzkl!l

P
l ylkWklzkl!l

P
l zlkWklzkl!l

3
777777777777777777775

2
666666666666666666664

fk

fk,x

fk,y

fk,z

3
777777777777777777775

=

2
666666666666666666664

h f ik
h f ik,x
h f ik,y
h f ik,z

3
777777777777777777775

,

(1.29)

where h f ik,� is the � component of the gradient approximation using eq. (1.16). The

correction proposed by Rosswog (2015) uses integral approximation resulting in the same

correction matrix in eq. (1.29). The application of the kernel gradient correction removes

the symmetric nature of the operators, making them non-conservative. Dilts (1999) and

recently Frontiere et al. (2017) have suggested that one may correct the function gradient

and then symmetrize the corrected kernel gradients to obtain a conservative formulation,

given by *rp
⇢

+

i
=

X

j

m j
p j + pi

⇢ j⇢i
(LirWi j � LjrWji), (1.30)

where Li is the correction proposed by Liu et al. (2006). However, the accuracy im-

provement shown was marginal. Therefore, a conservative and linear consistent gradient

operator is currently not available.

1.3.3 Laplacian discretization

The Laplacian is a challenging operator in the context of SPH. The simplest method

to approximate the Laplacian of velocity is the one where the double derivative of the

kernel is employed (Monaghan, 2005), given by

D
r2u

E
i
=

X

j

u jr2Wi j! j. (1.31)

However, the double derivatives of the kernel are very sensitive to any particle disorder.

Chen et al. (2000) propose an approach by solving a linear system by taking an inner

product with each of the double derivatives and taking into account the leading order

error terms. Zhang et al. (2004) proposed using the inner product with all the derivatives

of the kernel lower and equal to the required derivative and solving the linear system. This

generates a system of 10 equations in two dimensions. Korzilius et al. (2017) propose an

improvement over the method of Chen et al. (2000) to evaluate the correction term, given

by
D
r̃2u

E
i
= Ki

0
BBBBBB@
X

j

(uj � ui)r̃2Wi j! j � xi j · hruii r̃2Wi j! j

1
CCCCCCA , (1.32)
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where r̃2 =
h
@2

@x2 ,
@2

@x@y ,
@2

@y2

iT
is the operator, r̃2Wi j =


@2Wi j

@x2 ,
@2Wi j

@x@y ,
@2Wi j

@y2

�T
and Ki is the

correction proposed by Korzilius et al. (2017) 10. The gradient hruii in eq. (1.32) is

approximated using the linear consistent formulation in eq. (1.27). Schwaiger (2008) also

proposed to include high-order terms in the approximation to improve the accuracy near

free-surface. Macià et al. (2012) proposed boundary integral SPH formulation and also

includes boundary terms that naturally occur in the formulation.

The Laplacian may also be discretized using the first derivative of the kernel using an

integral approximation of the Laplacian. This was first suggested by Brookshaw (1985)

and has been improved by Morris et al. (1997) and Cleary et al. (1999), given by

D
r2u

E
i
=

X

j

2
(ui � u j)

ri j
ei j · rWi j! j, (1.33)

for two-dimensional domain, where ei j = ei�e j, ei j = xi j/ri j and ri j = |xi j|. They employ a

finite di↵erence approximation to evaluate the first order derivative and then convolve this

with the kernel derivative. This conserves linear momentum as
D
r2u

E
i! j
= �

D
r2u

E
j!i

.

However, this approximation does not converge as the resolution increases, especially

in the context of irregular particle distributions (see derivation in appendix A.3.4 and

section 2.2.1.). Fatehi et al. (2011) propose an improved formulation by accounting for

the leading error term, given by

D
r2u

E
i
=

X

j

2! j

 
(ui � u j)

ri j
� ei j · hruii

!
ei j · rWi j. (1.34)

Fatehi et al. (2011) also proposed corrections for this formulation (see appendix A.3.4).

These correction makes the method accurate and convergent but makes the approximation

non-conservative.

Another method to discretize the Laplacian is the repeated use of a first derivative

and this has been used by Bonet et al. (1999) and Nugent et al. (2000), given by

D
r2u

E
i
=

X

j

(hrui j � hruii)rWi j! j. (1.35)

This formulation is generally not popular since it shows high frequency numerical oscil-

lations when the initial condition is discontinuous. Recently, Biriukov et al. (2019) show

that these oscillations can be removed by employing smoothing near the discontinuity.

We derive the error in the formulations discussed in this section in appendix A.4.

In SPH literature, some of these approximations are widely used to discretize the NS

equations. In order to numerically solve the incompressible NS equation in eq. (1.19), two
10See derivation in appendix A.3.5.
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methods are widely used viz. the one where weak-compressibility of the fluid is assumed

and the second where the fluid is treated as incompressible. In the next section, we discuss

both of these methods in detail.

1.4 Incompressible fluid flow methods in SPH
In order to solve the incompressible NS equations, we must impose the incompressibility

condition resulting in a divergence-free velocity. However, the divergence-free condition

can be relaxed to solve incompressible flow. In this section, we discuss the two widely

used incompressible flow physics models used in SPH.

1.4.1 Incompressible SPH

The incompressible SPH (ISPH) model was first introduced by Cummins et al.

(1999). In this model, pressure is obtained by the projection method. The velocity field

u⇤ is decomposed into a curl-free and a divergence-free component, given by

u⇤ = u + �t
rp
⇢o
, (1.36)

where �t is the time step, u is the divergence-free component, ⇢o is the fixed fluid density,

and rp is the curl-free component. The pressure is obtained by taking the divergence of

eq. (1.36), given by

r ·
 rp
⇢o

!
=
r · u⇤
�t
, (1.37)

where u⇤ is obtained by integrating the momentum equation without considering the pres-

sure gradient, given by

u⇤ = un + �t
⇣
⌫r2u + f

⌘n
, (1.38)

where f is the body force, and un is the velocity at the timestep n. On solving eq. (1.37)

for pressure p, the intermediate velocity u⇤ is corrected using

un+1 = u⇤ � �t
rp
⇢o
. (1.39)

1.4.2 Weakly-compressible SPH

Chorin (1967) proposed to solve steady state incompressible flow using artificial

compressibility. In this method, instead of solving the NS equations given in eq. (1.19),

an auxiliary system of equations is solved, given by

d⇢
dt
= �⇢r · u, (1.40a)

du
dt
= �rp

⇢
+ ⌫r2u, (1.40b)
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where ⇢ is a transport property also called artificial density, the pressure is linked to the

artificial density using an artificial equation of state (EOS) given by

p =
⇢

�c
, (1.41)

where �c is an artificial compressibility parameter. Equation (1.40) can be solved numeri-

cally, and it produces steady-state solutions when run for a long time. The artificial speed

of sound co can be evaluated as

co =
1
�1/2

c
, (1.42)

and the Mach number M is given by

M =
max{|ui| 8 i 2 ⌦}

co
. (1.43)

It is necessary that M < 1. From equation eq. (1.41), eq. (1.42), and eq. (1.43), we have

⇢ = M2 p with maximum velocity in the domain equal to 1m/s.

The governing equations of the weakly-compressible model in eq. (1.40) can be dis-

cretized using di↵erent formulations discussed in section 1.2. Some of the widely used

schemes that use these discretizations are the standard scheme by Morris et al. (1997),

�-SPH by Antuono et al. (2010), Transport Velocity Formulation (TVF) by Adami et al.

(2013), Arbitrary Lagrange Eulerian SPH (ALE-SPH) by Oger et al. (2016), Entropi-

cally Damped Artificial Compressibility (EDAC) scheme by Ramachandran et al. (2019),

�+SPH by Sun et al. (2019), and Eulerian SPH (EWCSPH) by Nasar et al. (2019). We dis-

cuss all these schemes in detail in appendix A.5. The accuracy of these schemes is usually

shown by comparing with established results. Moreover, the rate of convergence is rarely

computed. The computation of the rate of convergence comes under a broader branch of

code verification (Oberkampf et al., 1995). In the next section, we will discuss di↵erent

methods used to verify convergence and the currently used verification techniques in SPH.

1.5 Verification of an implementation
Convergence study of an implementation of a numerical method is of utmost importance.

In a convergence study, the resolution of the domain discretization is increased to obtain

more accurate solutions. The rate of decrease of error with the resolution is called the rate

of convergence of the solution. Convergence validates that the numerical solution tends

to be the actual solution of the governing di↵erential equation.

Oberkampf et al. (1995) formally introduced the notion of verification and valida-

tion for computational codes. The definitions of validation and verification by Roache

(1998) are widely accepted. Verification is a mathematical exercise wherein we assess if
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the implementation of a numerical method is consistent with the chosen governing equa-

tions. For example, verification will allow us to check whether the code of a second-order

accurate method is indeed second-order. On the other hand, validation tests whether the

chosen governing equations suitably model the given physics. This is often established

by comparison with the results of experiments.

According to Roy (2005), verification can be further classified into two categories:

code verification and solution verification. The code is tested for its correctness in code

verification, whereas in solution verification, we quantify the errors in the solution ob-

tained from a simulation. For example, in solution verification, we solve a specific prob-

lem and estimate the error through some means like a grid convergence study. In the next

section, we present a literature survey of various theoretical and numerical attempts to

obtain the accuracy or the rate of convergence of the SPH operators and schemes.

1.5.1 Literature survey

Continuous SPH interpolation involves errors that are O(h2). However, for discrete

SPH approximation, second-order convergence is a grand challenge (Vacondio et al.,

2020). Various attempts have been made to obtain a second-order rate of convergence

by manipulating the smoothings (or support) radius h. Hernquist et al. (1989) proposed

that the support radius h be increased such that h / �x�1/3 in three dimensions. Subse-

quently, Quinlan et al. (2006) derived error estimates for the standard SPH discretization

and found that the ratio h/�x must increase as the h value is reduced to attain conver-

gence; this is due to the O
✓⇣
�x
h

⌘�+1
◆

term in eq. (1.17). This term is an issue because as

h increases, the number of neighbors for each particle increases resulting in a prohibitive

increase in computational e↵ort. Furthermore, increasing the smoothing radius also re-

duces the accuracy of the method. This is the approach used in the work of Zhu et al.

(2015), who proposed that the number of neighbors Nnbr / N0.5 to get convergence using

SPH kernels, where N is the number of particles in the domain. However, when we de-

crease h�x, the accuracy of the approximation improves without changing the resolution.

Furthermore, one cannot have the scaling factor h�x < 1 as the number of particles in

support of a given particle decreases.

Many authors investigated the e↵ect of the smoothness of the particle distribution

and kernel function. Kiara et al. (2013b) shows that when the particles are distributed

“uniformly" such that the perturbation of particles from a Cartesian arrangement is small,

it is possible to obtain second-order convergence. The results of Quinlan et al. (2006)

show that when using su�ciently smooth kernels (where � is large or infinite), one can

obtain second-order convergence for particle distribution on a Cartesian grid. Indeed,
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Lind et al. (2016) demonstrate that one can obtain higher-order convergence using higher-

order kernels for particle distributions on a Cartesian mesh. Evidently, the second-order

convergent approximation can be achieved in special cases.

However, for kernels normally used in SPH, the SPH approximations of derivatives

become inaccurate even on a uniform grid unless a very large smoothing radius is used.

In section 1.3.2 and section 1.3.3, we discussed many methods that have been proposed to

correct the discrete operators. These typically ensure that the derivative approximation of

a linear function is exact. These corrections make the derivative approximation second-

order accurate but increases the computational cost of the gradient computation two-fold.

Quinlan et al. (2006) showed second-order convergence of a sinusoidal function and its

derivative approximation using standard SPH method with the change in h�x. Schwaiger

(2008) showed improved accuracy by approximating the Laplacian of various 2D func-

tions. Macià et al. (2012) demonstrated the accuracy by showing the maximum absolute

error in constant, linear, and square functions with the change in the number of particles

in 2D. However, in SPH literature, a complete comparison of di↵erent formulations has

yet to be performed.

As mentioned earlier, the accuracy of di↵erent schemes proposed in SPH litera-

ture is shown using a comparison test. They show convergence in the form of plots that

approach an exact or experimental solution with increasing resolution without formally

computing the order of convergence. Chen et al. (2000) demonstrated the accuracy by

solving Burgers’ equations in one and two dimensions. Zhang et al. (2004) show conver-

gence by solving one-dimensional wave equation and two-dimensional heat conduction

problem. Marrone et al. (2011) solved problems like dam-break and compared the ac-

curacy using the experimental data. Kiara et al. (2013a) demonstrate the correctness of

the implementation by solving a hydrostatic problem, the collapse of a liquid column and

dam-break problem. Adami et al. (2013) show the convergence plot by comparing the

results with the exact solution of the Taylor-Green problem. Huang et al. (2019) also

solved the Taylor-Green problem to demonstrate the accuracy of their method. Sun et al.

(2019) compared the decay of the kinetic energy of the system with the change in reso-

lution for the Taylor-Green problem. However, they need to formally compute the rate of

convergence. Therefore, a rate of convergence study is rarely performed in SPH.

Some authors do perform a limited convergence study. Dehnen et al. (2012) show

the rate of convergence by solving the Gresho-Chan vortex problem; however, the highest

order of convergence achieved was 0.6. Rosswog (2015) also solved the Gresho-Chan

vortex problem and achieved a rate of convergence 1.0. Frontiere et al. (2017) achieve 1.9

rate of convergence for the 1D acoustic wave problem. Ramachandran et al. (2019) show
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a first-order convergence that gradually reduces at a higher resolution for the Taylor-Green

problem.

Some authors demonstrate second-order convergence for simpler problems with par-

ticles uniformly placed on a Cartesian grid configuration. Schwaiger (2008), Cleary et al.

(1999), Fatehi et al. (2011), and Korzilius et al. (2017) demonstrated convergence by solv-

ing the heat conduction problem, whereas Macià et al. (2012) solved the Poisson equation.

Lind et al. (2016) and Nasar et al. (2019) showed more than second-order convergence;

however, an Eulerian formulation is employed.

To the best of our knowledge, none of the contemporary Lagrangian SPH schemes

appear to demonstrate a formal second-order convergence even for simple fluid mechanics

problems like the Taylor-Green vortex problem for which an exact solution is known. This

motivates the current work on the development of a second-order convergent WCSPH

scheme.

1.6 Objective of current work
In this work, we carefully construct a family of Lagrangian WCSPH schemes that demon-

strate second-order numerical convergence in a periodic domain. Subsequently, we iden-

tify convergent boundary condition implementations to develop a code that can simulate

a wind tunnel-like simulation with high accuracy using the weakly-compressible model.

The following are the main objectives of the work.

1. Compare the convergence of state-of-the-art WCSPH schemes by solving a periodic

problem with an exact solution.

2. Identify the issues that prevent the convergence of the WCSPH schemes present in

the literature and develop an accurate second-order scheme.

3. Develop a fast and robust technique to test the convergence of a WCSPH code using

the Method of Manufactured Solutions (MMS).

4. Develop parameter-free, accurate, non-reflecting inlet and outlet boundary condi-

tion implementations.

5. Identify convergent boundary condition implementations for solid, inlet, and outlet

boundaries.

6. Develop an algorithm to simulate a flow past a circular cylinder with a high level of

accuracy.
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In the interest of reproducibility, we implement all the schemes using the PySPH

(Ramachandran et al., 2021) framework, and all the results shown in this work is auto-

matically generated through the use of an automation framework automan (Ramachan-

dran, 2018). The source code for the work is available at various repositories available at

https://gitlab.com/pypr.

1.7 Outline
In chapter 2, we show the comparison of various aspects involved in an SPH scheme

starting from the kernel to various discretizations for gradient, divergence, and Lapla-

cian approximation. We then discuss the new second-order convergent scheme and its

variations. We verify the convergence and conservation properties by solving di↵erent

problems using new and existing schemes. In chapter 3, we discuss the use of the MMS

to verify WCSPH schemes. We show how one can use the MMS within the framework

of Lagrangian formulations. In chapter 4, we discuss various methods to capture the fea-

tures of a solid body using multiple layers of particles for an accurate boundary condition

implementation. In chapter 5, we discuss various existing boundary condition implemen-

tations for Neumann pressure, slip, no-slip, and inflow/outflow boundaries. We propose

a hybrid non-reflecting outlet boundary condition implementation and novel test cases

testing various aspects of the implementation. In chapter 6, we propose various manufac-

tured solutions to verify the convergence of various boundary condition implementations.

We use the proposed convergent schemes and the boundary condition implementations

to propose a complete second-order convergent scheme. In chapter 7, we discuss our

contributions and the future scope of the work.

https://gitlab.com/pypr




Chapter 2

Construction of second-order
convergent WCSPH schemes

As discussed in the previous chapter, the convergence of the WCSPH schemes is a grand

challenge (Vacondio et al., 2020). Many authors have proposed schemes like TVF, EDAC,

�-SPH, �+SPH, and EWCSPH (see appendix A.5 for details). They show the accuracy of

the obtained solutions by comparing them with analytical or established results. How-

ever, the rate of convergence of these schemes with the increase in particle resolution

is not investigated. In this chapter, we systematically investigate various aspects of a

weakly-compressible SPH scheme viz. type of kernel function, the smoothing scale h�x,

application of kernel gradient correction, and the type of discretization formulation.

We first study several commonly used SPH kernels in the context of function and

derivative approximation using particles either in a Cartesian arrangement or in an ir-

regular but packed configuration of particles. The packed configuration is created by

shifting the particles from an irregular distribution such that the particle density is uni-

form. We choose a suitable kernel gradient correction scheme that produces second-order

convergence for a function gradient approximation. We then select a suitable smoothing

kernel and smoothing radius based on this study. We then systematically study the vari-

ous discretization operators along with suitable corrections. Our investigations are in two

dimensions, although the results are also applicable in three dimensions. Our numeri-

cal investigation covers a wide range of resolutions, with our highest resolution having a

quarter million particles with L
�x = 500, where L = 1m is the length of the domain.

Once we have identified suitable second-order convergent operators, we carefully

construct SPH schemes that display a second-order convergence (SOC). We use the

Method of Exact Solutions (MES), and solve the Taylor-Green vortex problem to demon-

strate this. We also compare our results with those of several established SPH methods

17
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currently used. We study the accuracy and convergence and investigate the computa-

tional e↵ort required. We construct both Lagrangian and Eulerian schemes that are fully

second-order convergent. We provide schemes that use either an artificial compressibil-

ity in the form of an equation of state as done in the standard WCSPH scheme or using

a pressure evolution equation similar to the EDAC scheme. Once we have demonstrated

second-order convergence for the Taylor-Green vortex problem, we proceed to investigate

the schemes using the Gresho-Chan vortex (Gresho et al., 1990) problem as well as an

incompressible shear layer problem (Di et al., 2005) and look at how the lack of manifest

conservation impacts the conservation of linear and angular momentum.

2.1 Selection of approximating kernel
In this section, we compare various SPH kernels for their accuracy and order of conver-

gence in a discrete domain. We evaluate the error in function and derivative approximation

in a two-dimensional periodic domain. We simulate periodicity by copying the appropri-

ate particles and their properties near the boundary such that the boundary particles have

full support (Randles et al., 1996). The particles are either placed in a uniform Cartesian

mesh (unperturbed) or in a packed arrangement referred to as unperturbed periodic (UP)

or perturbed periodic (PP), respectively. In order to obtain the packed configuration, the

particles are slightly perturbed from a uniform mesh, and their positions are moved and

allowed to settle into a particle distribution with a nearly constant density using a particle

packing algorithm (Colagrossi et al., 2012). The algorithm e↵ectively ensures that the

particles are not clustered and have minimal number density variations. This distribution

can be achieved using any Particle Shifting Technique (PST) (Colagrossi et al., 2012;

Huang et al., 2019; Lind et al., 2012). In fig. 2.1, we show both domains.

Figure 2.1 : The unperturbed periodic particle and perturbed periodic particles.
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Name Radius � Remark

G: Gaussian 3 0 Truncated for low Nnbr

QS : Quintic spline 3 2 Tensile instability

CS : Cubic spline 2 4 Paring and tensile instability

WQ2: Wendland O(2) 2 3 No tensile or pairing instability

WQ4: Wendland O(4) 2 5 Produces higher accuracy

WQ6: Wendland O(6) 2 7 Produces higher accuracy

Table 2.1 : Kernels and their properties (� reported for 1D kernels)

We consider the set of kernels discussed in chapter 1 also listed in table 2.1. It

covers a wide range, including high order, kernels having tensile instability and pairing

instability (see appendix A.2 for details). In order to assess the e↵ect of h�x for a kernel,

we perform the numerical experiment proposed by Dehnen et al. (2012). We evaluate

particle density  using eq. (1.12) for increasing number of neighbors Nnbr, for each of

the kernels. The increase in Nnbr corresponds to the scaling of the smoothing kernel using

the h�x parameter. In this numerical experiment, we change both the resolution and h�x to

increase Nnbr. Since we consider a uniform particle distribution, we compute the absolute

error in the density for only one particle, given by

L1 = | i � 1.0|, (2.1)

where i is any particle having full kernel support.

Figure 2.2 : The particle density for di↵erent kernels with varying numbers of neigh-

bors.
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In fig. 2.2, we plot the absolute error in the particle density of particles in a UP

domain for di↵erent kernels with the change in Nnbr under the kernel support. The Wend-

land kernels show a monotonic decrease in error with the increasing Nnbr. However, in the

case of the G and QS kernels, the errors are an order less at a lower Nnbr compared to the

Wendland class of kernels. The error in the G kernel does not change significantly with

the change in the Nnbr compared to others. It is because we truncate the G kernel to have

compact support. In the case of the QS kernel, the error is lower than the WQ4 kernel in

the plot. Therefore, we drop WQ2 and WQ4 kernels in the subsequent investigations since

it reaches the order of accuracy of QS when Nnbr is approximately 60. High Nnbr results

in higher computational costs.

Figure 2.3 : Order of convergence for the approximation of a function for di↵erent h�x

values in a UP domain. The dashed line shows the second-order rate.
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Figure 2.4 : Order of convergence for derivative approximation for di↵erent h�x values

in a UP domain. The dashed line shows the second-order rate.

We compare the four kernels viz. G, CS , QS , and WQ6 for the convergence of the

function and its gradient approximation. We consider the field

f = sin(⇡(x + y)). (2.2)

Given a function go and its approximation g, we evaluate the L1 error using

L1 =

PN
i |g(xi) � go(xi)|
PN

i |go(xi)|
, (2.3)

where N is the total number of particles in the domain. Since the CS and WQ6 kernels

have a support radius of 2h whereas, the G and QS kernels have support radius of 3h, we

set the h�x such that the Nnbr is same in the UP domain. Therefore, when h�x = 1.0 for
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Figure 2.5 : Order of convergence for function approximation for di↵erent h�x values in

a PP domain. The dashed line shows the second-order rate.

QS (or G) kernel, we take h�x = 1.5 for the CS (or WQ6) kernel. For the convergence

study, in this work, we consider 50⇥ 50, 100⇥ 100, 200⇥ 200, 250⇥ 250, 400⇥ 400, and

500 ⇥ 500 resolutions for all the test cases unless stated otherwise.

2.1.1 Unperturbed periodic domain

In fig. 2.3, we plot the L1 error in the function approximation as a function of the

resolution for di↵erent values of h�x in a UP domain. We observe similar error values for

all the kernels except CS . We obtain second-order convergence (SOC) in a UP domain

up to a considerably high resolution of 500 ⇥ 500, as expected for all the kernels.
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Figure 2.6 : Order of convergence for the derivative approximation for di↵erent h�x val-

ues in a PP domain. The dashed line shows the second-order rate. Equa-

tion (1.23) is used for the approximation.

In fig. 2.4, we plot the L1 error in the derivative approximation of the function in

eq. (2.2) in a UP domain. The G and QS kernels show a better convergence rate compared

to CS and WQ6 for lower h�s. The G kernel does not show SOC even at h�x = 2.5 since

we use a truncated Gaussian. The CS and WQ6 kernel show SOC only when h�x � 3.0.

The QS kernel shows SOC at h�x > 1.5 however, a reasonable convergence can be seen

for h�x = 1.2 as well.
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2.1.2 Perturbed periodic domain

In an SPH simulation, the particles advect with di↵erent velocities, and thus the

distribution of particles does not remain like a UP domain. However, any particle shifting

technique can make the particle distribution uniform. Thus, it is essential to observe the

convergence rate in the PP domain as well.

In fig. 2.5, we plot the L1 error of the approximation of the field given in eq. (2.2)

as a function of resolution in a PP domain for di↵erent h�x values. The convergence rates

tend to zero for higher resolution for a low value of h�x for all the kernels. The WQ6

kernel performs worse than the CS kernel at lower h�x values; however, the errors are

significantly lower in WQ6 when the h�x value increase. On comparing G and QS , the

error plot looks exactly the same except when h�x = 1.0.

The SPH approximation of the gradient of a function is not even zero-order accurate

in a perturbed domain (see derivation in appendix A.4.3). The derivatives diverge when

we evaluate it using eq. (1.17). We use a zero-order consistent formulation in eq. (1.23)

to compare the kernels.

In fig. 2.6, we plot the L1 error in the function derivative approximation as a function

of resolution using eq. (1.23) in a PP domain for di↵erent h�x values and kernels. Clearly,

the approximation for all the kernels shows poor convergence. The G kernel does not

show SOC for high h�x, which is the same as observed in the case of the UP domain. The

accuracy in the case of QS and CS oscillates when going from lower h�x to higher values.

Zhu et al. (2015) suggest increasing the h�x as one increases the resolution, but given the

inconsistent behavior of the CS and QS kernels, these may not be suitable for these

kernels. The zero-order convergence rate occurs due to the dominance of discretization

error (the term
⇣
�x
h

⌘�+1
in eq. (1.17)) when the resolution increases in the PP domain.

In order to study the e↵ect of kernel gradient correction, we apply the correction

proposed by Bonet et al. (1999) for all the selected kernels (see appendix A.3.1). The

function gradient is computed using the corrected formulation in eq. (1.27). In fig. 2.7,

we plot the L1 error in the derivative approximation as a function of resolution. Clearly,

all the kernels Gaussian (G), Wendland O(6) (WQ6), cubic spline (CS ), and quintic spline

(QS ) show more or less the same behavior. Thus, we can choose any of these kernels for

our convergence study of the WCSPH schemes. In fig. 2.7, it can be seen that the WQ6 and

G kernels do not sustain second-order behavior. Furthermore, a lower h�x results in higher

quadrature error; whereas, a higher h�x increases the number of particles in the support

radius resulting in higher computational cost. Therefore in this work, we heuristically

choose the QS kernel with a h�x = 1.2 for all the test cases henceforth.



2.2 Comparison of discretization operators 25

Figure 2.7 : The convergence of the derivative approximation with di↵erent kernels

when the kernel gradient correction of Bonet et al. (1999) is used on a PP

domain. We use h�x = 1.2.

2.2 Comparison of discretization operators
There are many di↵erent ways to discretize the operators present in the NS equations,

as discussed in chapter 1. In this section, we compare the rate of convergence of vari-

ous formulations discussed in section 1.3. One of the key features of these formulations

was pair-wise symmetry and asymmetric. The pair-wise asymmetry results in linear mo-

mentum conservative, whereas the divergence and gradient operators being adjoint result

in volume-preserving time integration. In view of this, we consider all formulations, ir-

respective of their unique property, in the present study. In this section, we show the

convergence with h instead of �x since we have fixed the value of h�x = 1.2 unless stated

otherwise.

2.2.1 Comparison of r · u approximation

We rewrite the zero-order consistent SPH approximation for the divergence operator

as described in section 1.3.1, given by

hr · uii =
X

j

(u j � ui) · rWi j! j. (2.4)

We refer to the approximation given in eq. (2.4) as div. We apply the kernel gradient

correction as done in eq. (1.27) for a first-order consistent approximation, given by

hr · uii =
X

j

(u j � ui) · BirWi j! j. (2.5)
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We refer to the corrected form as div_bc.

Figure 2.8 : The rate of convergence in UP (left) and PP (right) domains for velocity

divergence approximation in eq. (2.4). The dashed line shows the SOC rate.

The su�x _bc represents the corresponding form with Bonet correction.

We consider the velocity field u = sin(⇡(x+y))(î+ ĵ). The divergence of the velocity

r · u = 2⇡ cos(⇡(x+ y)). We evaluate the L1 error in the approximation using eq. (2.3). In

fig. 2.8, we plot the L1 error in the divergence approximation in a UP and PP domain. The

uncorrected approximation does not display SOC since the discretization error dominates

as we approach higher resolutions. Clearly, the corrected form shows SOC even in the

case of a PP domain.

In order to evaluate the accuracy of the approximation in a divergence-free field, we

consider the velocity field

u = � cos(2⇡x) sin(2⇡y),

v = sin(2⇡x) cos(2⇡y).
(2.6)

In fig. 2.9, we plot the L1 error using eq. (2.3) in the divergence computation as a function

of resolution for the UP and PP domains. Clearly, the divergence is zero in a UP domain

owing to the symmetry of the particles. However, the error in the PP domain remains

about the same order as seen in the case of the general field in fig. 2.8. We discuss this

dependency of the approximation on the velocity field and the particle arrangement in

section 2.3.2. However, we note that the Bonet correction does not correct this issue. We

observe the implication of this behavior when we compare the schemes in section 2.4.3.

The continuity equation corresponds to the mass conservation of the system, since

the mass of each particle is kept constant; we implicitly satisfy the global conservation of

mass.
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Figure 2.9 : The rate of convergence in UP (left) and PP (right) domains for divergence

approximation of a divergence-free velocity field. The dashed line shows

the SOC rate. The su�x _bc represents the corresponding form with Bonet

correction.

2.2.2 Comparison of rp
⇢ approximation

In this section, we compare various pressure gradient approximations. In table 2.2,

we list the gradient approximations considered in this study. The sym1 and sym2 are the

symmetric, conservative form of the gradient approximation. The asym is the asymmetric

form. Since the SPH gradient approximation does not show SOC in a perturbed domain

(See appendix A.4.6), we also consider the kernel gradient correction employed for each

of the approximations. In this work, we refer to the correction proposed by Bonet et al.

(1999) as Bonet correction and the one proposed by Liu et al. (2006) as Liu correction.

We add the su�x _bc, and _lc respectively in the plots and tables to indicate these cor-

rections. The application of corrections renders the symmetric forms non-conservative.

One can employ the method of symmetrization of the kernel proposed by Dilts (1999) to

make it conservative again. We refer to this formulation as sym_sl.

In order to compare the convergence, we consider a pressure field p = sin(⇡(x + y)).

We determine the L1 error using eq. (2.3), where g(xi) is the pressure gradient evaluated

using the approximation and go(xi) is the exact pressure gradient. The exact pressure

gradient rp = ⇡ cos(⇡(x + y))(î + ĵ). We compare only the x-component of the results.

In fig. 2.10, we plot the error in the various gradient approximations discussed above in

both UP and PP domains. In the UP domain, barring the sym2_lc, all the corrected gra-

dient approximations behave the same, whereas the uncorrected gradients do not display

SOC. The corrected versions retain SOC even at high resolution since it reduces the dis-
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Name Expression Used in

asym_bc
P

j
(p j�pi)
⇢i

BirWi j! j Hashemi et al. (2012)

asym
P

j
(p j�pi)
⇢i
rWi j! j Sun et al. (2018)

sym1_bc
P

j
(p j+pi)
⇢i⇢ j

BirWi jmj -

sym1_lc
P

j
(p j+pi)
⇢i⇢ j

LirWi jmj -

sym1
P

j
(p j+pi)
⇢i⇢ j
rWi jmj �+ SPH

sym2_bc
P

j m j

✓
p j

⇢2
j
+ pi

⇢2
i

◆
BirWi j -

sym2_lc
P

j m j

✓
p j

⇢2
j
+ pi

⇢2
i

◆
LirWi j -

sym2
P

j m j

✓
p j

⇢2
j
+ pi

⇢2
i

◆
rWi j WCSPH, TVF, EDAC, ISPH

sym_sl
P

j m j
p j+pi

⇢ j⇢i
(LirWi j � LjrWji) Frontiere et al. (2017)

Table 2.2 : Di↵erent gradient approximations for rp
⇢ . The formulations with blank

“Used in” columns are not used in any existing scheme.

Figure 2.10 : The rate of convergence in UP (left) and PP (right) domains for various

pressure gradient listed in table 2.2. The dashed line shows the SOC rate.

The _bc and _lc su�xes represent the corresponding form with Bonet

correction and Liu correction, respectively. The sym_sl is the sym1 for-

mulation with symmetrization of kernel proposed in Dilts (1999).
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Name FT
Fmax

Tr L1 error Order

asym_bc 1.01e-02 1.97 1.11e-04 1.99

asym 3.10e-04 1.00 1.01e-03 0.98

sym1_bc 1.08e-02 1.87 7.65e-02 -0.75

sym1_lc 1.01e-02 2.35 1.11e-04 1.99

sym1 -2.53e-11 1.05 7.65e-02 -0.76

sym2_bc 1.10e-02 1.87 7.65e-02 -0.75

sym2_lc -1.90e-11 2.43 7.65e-02 -0.76

sym2 -1.87e-11 1.01 7.65e-02 -0.76

sym_sl -1.73e-11 2.50 6.46e-02 -0.72

Table 2.3 : The ratio FT
Fmax

showing the total force in the system due to the lack of conser-

vation in the approximation, the time taken Tr relative to the asym formula-

tion, the L1 error for 500 ⇥ 500 particle in a PP domain, and the last column

shows the order of convergence for all the methods listed in the first column.

The formulations that show convergence is shown in red.

cretization error in the approximation (Fatehi et al. (2011), Quinlan et al. (2006)). We

also observe that with the correction, the second term involving the pi term is zero in a

UP domain leading to the same expression for all the formulations.

In the case of the PP domain, we observe that both sym1 and sym2 and their cor-

responding _bc versions overlap. The symmetric formulations show an increase in the

error in the approximation with increasing resolution as suggested by Fatehi et al. (2011).

Furthermore, the Bonet correction does not correct the symmetric formulations. Clearly,

the asym formulation shows better convergence, and the Bonet correction version shows

SOC. Therefore, the Bonet correction can be applied when an asymmetric formulation is

employed. Moreover, the Liu correction only corrects the symmetric form sym1, which

suggests that the sym2 cannot be corrected using traditional correction techniques. We

discuss this behavior in section 2.3.1 in detail. Finally, the sym_sl method has a slightly

lower error but loses SOC behavior due to the symmetrization of the kernel gradient.

Frontiere et al. (2017) reported similar behavior.

We also compare the linear momentum conservation and time taken to evaluate the

gradient for the case with 500 ⇥ 500 particles. As shown in Bonet et al. (1999), linear

momentum is conserved when the total force FT =
P

i Fi = 0, where the sum is taken

over all the particles and Fi =
rpi
⇢i

. In table 2.3, we tabulate the ratio of total force to the

maximum force Fmax = max{Fi8i 2 N}, the time taken to evaluate the gradient scaled
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by the minimum time taken out of all the methods referred as Tr, and the L1 error with

the order of convergence 1, for all the formulations plotted in fig. 2.10. As expected, all

the symmetric forms of approximation have zero total force. The asymmetric formulation

has a very small total force. Clearly, the use of Bonet correction increases the total force

and slows down the computation by a factor of 2, whereas the Liu correction makes it 2.4

times slower. The sym_sl formulation shows zero residual force as expected. Using the

table 2.3, we can see that asym_bc and sym1_lc show SOC and have a very low total

force which makes them a suitable candidate for a scheme with SOC. We simulate inviscid

flows in section 2.4.4 to investigate the implication of these forces on conservation.

2.2.3 Comparison of r2u approximation

In this section, we compare various approximations for the Laplacian operator dis-

cussed in section 1.3.3 also listed in table 2.4. We refer to the symmetric formulations of

Cleary et al. (1999) and Brookshaw (1985) as Cleary, and those of Adami et al. (2013)

as tvf. These ensure that linear momentum is conserved. We also consider the coupled

formulation used by Bonet et al. (1999) and Nugent et al. (2000) and refer to these as

coupled. This formulation shows oscillations in the approximation when the initial con-

dition is discontinuous. However, to remedy this, one can perform an accurate first-order

approximation near the discontinuity and then perform this approximation as proposed by

Biriukov et al. (2019). We consider the improved formulation proposed by Fatehi et al.

(2011) referred to as Fatehi. Both coupled and Fatehi formulations are asymmetric.

These formulations are performed in two stages. The first stage involves the computation

of the velocity gradient for each particle before the computation of the Laplacian. We

also consider the correction applied to each of these formulations. In the case of Cleary,

tvf, and coupled methods, we use the standard Bonet and Liu corrections. However, in

the case of Fatehi, we use the correction tensor proposed by Fatehi et al. (2011). We

also consider the method proposed by Korzilius et al. (2017) that remedies the deficien-

cies in earlier approaches where the second derivative was employed. We refer to this

formulation as Korzilius.

In fig. 2.11, we plot the rate of convergence for the various formulations discussed

above in both UP and PP domains. In the UP domain, all the methods at least show

zeroth-order convergence. All methods without corrections su↵er from high discretiza-

tion error that dominates at higher resolutions (see appendix A.4). When either Bonet or

Liu corrections are employed, Cleary, coupled, Fatehi_c, and Korzilius methods
1In this work, we report the order of convergence by fitting a linear regression line and finding its slope.
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Name Expression Used in

Cleary_bc
P

j 2(ui � u j)Bi
rWi j·xi j

|xi j |2 ! j

Cleary_lc
P

j 2(ui � u j)Li
rWi j·xi j

|xi j |2 ! j -

Cleary
P

j 2(ui � u j)
rWi j·xi j

|xi j |2 ! j WCSPH

Fatehi_c Fi
P

j 2! j

⇣ (ui�u j)
|xi j | �

xi j·hruii
|xi j |

⌘ rWi j·xi j

|xi j | Fatehi et al. (2011)

Fatehi
P

j 2! j

⇣ (ui�u j)
|xi j | �

xi j·hruii
|xi j |

⌘ rWi j·xi j

|xi j | Fatehi et al. (2011)

Korzilius Ki

⇣P
j(uj � ui)r̃2Wi j! j � xi j · hruii r̃2Wi j! j

⌘
Korzilius et al. (2017)

coupled_bc
P

j(hrui j � hruii) · BirWi j! j -

coupled
P

j(hrui j � hruii) · rWi j! j Bonet et al. (1999)

tvf_bc
P

j
1
mi

⇣
!2

i + !
2
j

⌘
(ui � u j)Bi

rWi j·xi j

|xi j |2 -

tvf_lc
P

j
1
mi

⇣
!2

i + !
2
j

⌘
(ui � u j)Li

rWi j·xi j

|xi j |2 -

tvf
P

j
1
mi

⇣
!2

i + !
2
j

⌘
(ui � u j)

rWi j·xi j

|xi j |2 TVF, EDAC

Table 2.4 : The various approximations of r2u. The formulations with blank “Used in”

columns are not used in any existing scheme.

Figure 2.11 : The rate of convergence UP (left) and PP (right) domains for various ap-

proximations of the Laplacian operator in table 2.4. The dashed line shows

the SOC rate. The su�xes _bc and _lc represent the corresponding form

with the Bonet correction and Liu correction, respectively. The Fatehi_c

refers to the fatehi formulation with the correction proposed by Fatehi

et al. (2011) (see appendix A.3.4).

show SOC. The coupled method is approximately half an order less accurate as com-

pared to Cleary and Fatehi. The accuracy of the Korzilius method is in between the
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Name FT
Fmax

Tr L1 error Order

Cleary_bc -1.28e+00 1.95 6.55e-02 -0.83

Cleary_lc -2.15e-01 2.43 4.59e-02 -0.79

Cleary -1.08e-10 1.12 6.54e-02 -0.84

Fatehi_c 1.69e+00 4.10 2.88e-04 1.30

Fatehi 1.30e+00 2.70 8.43e-04 0.68

Korzilius 1.61e+00 4.66 2.49e-04 1.70

coupled_bc 1.61e+00 3.05 2.54e-04 1.95

coupled 1.30e+00 2.59 8.38e-04 1.46

tvf_bc -1.26e+00 2.07 6.80e-02 -0.66

tvf_lc -2.16e-01 2.35 5.01e-02 -0.56

tvf -1.06e-10 1.00 6.77e-02 -0.67

Table 2.5 : The ratio FT
Fmax

showing the total force in the system due to the lack of con-

servation of the approximation and the time taken, Tr relative to the tvf

formulation, and L1 error for 500 ⇥ 500 particle case in a PP domain. The

last column shows the order of convergence for all the methods listed in the

first column. The formulations that show convergence is shown in red.

coupled and Fatehi methods. The tvf method is very inaccurate as the discretization

error increases due to the introduction of !2
i + !

2
j .

It is important to note that in the PP domain, the symmetric methods diverge due

to the discretization error of O
⇣

d̃i
h2
�x
h

⌘
(see table A.7). Only the coupled, Korzilius,

and Fatehi methods show a positive convergence rate. On applying the corresponding

correction, the coupled, Korzilius, and Fatehi methods improve. The accuracy for

coupled, Korzilius, Fatehi is maintained, as observed in the case of the UP domain.

However, at high resolution the quadrature error dominates.

In table 2.5, we tabulate the total force as a result of the approximation, the relative

time taken for the approximation, and the error on a PP domain consisting of 500 ⇥ 500

particles with the order of convergence in the last column for each method plotted in

fig. 2.11. We observe a similar increase in computational time due to the Bonet and Liu

corrections, as seen in the case of gradient approximation. The coupled, Korzilius, and

Fatehi formulations have even higher computational costs due to the additional step of

velocity gradient computation. The Korziliusmethod requires additional time since the

double derivative of the kernel is involved. The Fatehi_c method has an additional step

where we compute the second-order tensor as shown in appendix A.3.4 for each particle
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resulting in a further increase in computation time. We observe a similar increase in total

force when an asymmetric version of the formulation is employed, as seen in the case of

gradient approximation. Clearly, coupled, Korzilius, and Fatehi formulation results

in an equal amount of total force resulting in a lack of conservation of linear momentum.

In order to get a SOC approximation, we can use either of coupled_bc, Korzilius, or

Fatehi_c formulations for viscous force estimation.

In the next section, we use the observations in section 2.2 to construct a SOC scheme.

2.3 The second-order convergent WCSPH scheme
We observe that many operator discretizations show second-order convergence. However,

a convergent WCSPH implementation is still a grand challenge (Vacondio et al., 2020)

in SPH literature. In this section, we propose a second-order convergent scheme and its

variation. In the following sections, we point out some approaches which may make the

scheme di�cult to converge.

2.3.1 Considerations while applying kernel gradient correction

In section 2.2, we observed that some discretization do not converge even after ap-

plying the kernel gradient correction. In order to explain the behavior, we consider the

first-order Taylor series approximation of a function f defined at x about xi, given by

f (x) = f (xi) + (x � xi) · r f (xi) + O(|�x|3). (2.7)

Integrating both sides with rW(x � xi) over the entire domain, we get
Z

f (x)rWdx =
Z

f (xi)rWdx +
Z

(x � xi) · r f (xi)rWdx

=

Z
f (xi)rWdx +

Z
(rW ⌦ (x � xi))r f (xi)dx,

(2.8)

ignoring the higher-order terms. Using a one-point quadrature approximation (Dilts,

1999), we get
X

j

f jrWi j! j =
X

j

firWi j! j +
X

j

rWi j ⌦ (x j � xi)r f (xi)! j

=) r f (xi) =
X

j

( f j � fi)BirWi j! j,
(2.9)

where Bi =
⇣P

j rWi j ⌦ (x j � xi)
⌘�1

is the correction matrix proposed by Bonet et al.

(1999). Clearly, the first-order Taylor-series automatically suggests correction proposed



34 Construction of second-order convergent WCSPH schemes

in Bonet et al. (1999) on an asym formulation. Equation (2.9) is O(h2) accurate (see

table A.1).

On the other hand, the correction proposed by Liu et al. (2006), originates by con-

volving the Taylor series with W(x � x j) and rW(x � x j), and solving all the equation

simultaneously (see appendix A.3.2). For a constant field, this method ensures that we

satisfy
P

W̃i j! j = 1 and
PrW̃i j! j = 0, where W̃ is the corrected kernel. Therefore, with

this correction in both sym1_lc and asym_lc formulations, the second term

piLi

X

j

rWi j! j,

becomes zero, and we get the SOC approximation. Whereas, in sym2_lc, the term

pi

⇢2
i
Li

X

j

rWi jmj,

does not become zero. Thus even this correction fails to improve the approximation.

Similarly, using the Taylor series expansion, Fatehi et al. (2011) derived a correction for

the Laplacian operator. Therefore, the kernel gradient correction works with a certain

form of the weight resulting in a linearly consistent formulation.

2.3.2 Considerations for the initial particle distribution

The particle distribution plays an important role in the error estimation of divergence

approximation. In this section, we use first-order Taylor series approximation to obtain

the error in divergence approximation as done in the previous section. We consider a

two-dimensional velocity field. We write the error Ei, in the divergence evaluation as

Ei = r · ui �
X

j

(u j � ui) · rWi j! j, (2.10)

Using first-order Taylor-series expansion of u j about the point xi,

u j = ui � (xi j · r)ui, (2.11)

we write

Ei =

0
BBBBBB@1 �

X

j

xi j
@Wi j

@x
! j

1
CCCCCCA
@ui

@x
+

0
BBBBBB@1 �

X

j

yi j
@Wi j

@y
! j

1
CCCCCCA
@vi
@y

�
X

j

yi j
@ui

@y

@Wi j

@x
! j �

X

j

xi j
@vi
@x

@Wi j

@y
! j.

(2.12)

In the case of a UP domain, in eq. (2.12), the last two terms are exactly zero, and the

coe�cient of the first two terms are of equal magnitude. Furthermore, for a divergence-

free velocity field, @ui
@x = �

@vi
@y . Therefore, the overall error becomes zero. On the other
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hand, in a PP domain, the last two terms are of equal magnitude and thus cancel, and

the first two terms are di↵erent to the order 10�4 (see section 2.2.1) which becomes the

leading error term. Thus, we always get an error of the order of 10�4 even after applying

the Bonet correction. As far as we are aware, no known SPH discretizations can resolve

this issue using a simple correction as done in the case of gradients. This is a possible

avenue for future research.

2.3.3 Minimal requirements for a SOC scheme

In this section, we discuss the minimal requirement to obtain a SOC scheme for

weakly compressible fluid flows. In the existing WCSPH scheme, the pressure gradient

term is discretized using either sym1 or sym2 formulation. The value of ⇢ in the formula-

tions is obtained using the continuity equation or from the particle density. Furthermore,

this ⇢ is used to evaluate acceleration due to pressure gradient.

Let us consider the first method, where the continuity equation is used to determine

the density of particles. Since the volume ! j = mj/⇢ j. Therefore, integration volume will

change according to the divergence of velocity. Hence, the integration volume ! is linked

to the density, which is to the velocity field.

In the second method, where particle density  is used to determine density ⇢. We

note that the symmetric formulation used in all existing scheme to evaluate pressure gra-

dient ensures a uniform distribution of particle, e.g. for sym1

X

j

(pj + pi)rWi j! j =
X

j

(pj � pi)rWi j! j + 2pi

X

j

rWi j! j, (2.13)

where the first term on the right is the zero-order approximation and the second term is

a kind of regularization force. Therefore, the regularization force is forcing particles to

be equispaced. However, an uneven particle distribution is required to identify high and

low pressure region while using the particle density. In view of this relation between

the particle density and the fluid density, and the identified convergent formulations from

previous sections, we propose the following requirements to construct a SOC scheme.

1. We propose to use density as a transport property carried with the particle like

velocity and pressure. We rewrite the governing equation, given by

d⇢
dt
= �⇢r · u, (2.14a)

du
dt
= �rp

⇢
+ ⌫r2u, (2.14b)
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where ⇢, u, and p are transport properties. Furthermore, the pressure is updated

using

pi = ⇢oc2
o

0
BBBB@
 
⇢i

⇢o

!7

� 1
1
CCCCA , (2.15)

where ⇢o is the reference density. Equation (2.15) is the equation of state for water

proposed by Batchelor (1967) that models the weakly-compressible nature accu-

rately.

2. In order to evaluate the integration volume !, we use the particle density  . There-

fore, the integration volume is computed as

!i =
mi

 i
, (2.16)

where

 i =
X

j

m jWi j. (2.17)

Thus, we can approximate the density ⇢ using the standard SPH approximation

given by

⇢i =
X

j

⇢ jWi j! j. (2.18)

3. We propose to employ the SOC approximations as discussed in section 2.2. In

table 2.6, we list all the discretizations that we can employ to obtain a SOC WCSPH

scheme.

Operators Possible discretization for SOC

Gradient asym_bc, sym1_lc

Divergence div_c

Laplacian coupled_c, Fatehi_c, Korzilius

Table 2.6 : The operators and their discretization suitable for a SOC scheme (For details,

refer section 2.2).

4. Since we use an asymmetric form of the pressure gradient approximation, particles

tend to clump together due to the absence of a redistributing background pressure

(Sun et al., 2018). Therefore, we propose to use the iterative particle shifting pro-

posed by Huang et al. (2019) after every few iterations to redistribute the particles.

Using the above four requirements, we propose a SOC WCSPH scheme in the next

section.
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A new SOC WCSPH scheme

In this scheme, we discretize the RHS in eq. (2.14) using SOC methods shown in table 2.6.

We use div_c method to discretize the continuity equation given by
d⇢
dt
= �⇢i

X

j

(u j � ui) · BirWi j! j, (2.19)

and in the momentum equation, we discretize the pressure gradient term using asym_c

and the viscous term using coupled_c, given by

du
dt
= �

X

j

(pj � pi)
⇢i

BirWi j! j + ⌫i

X

j

(hrui j � hruii)BirWi j! j. (2.20)

We obtain pressure using eq. (2.15). We note that the linear equation of state in eq. (A.36)

works equally well. We evolve the particles in time using a Runge-Kutta 2nd order inte-

grator given by

�n+1/2(x) = �n(x) +
1
2
�t

d�n(x)
dt
,

�n+1(x) = �n(x) + �t
0
BBBB@
d�n+1/2(x + 1

2�tu)
dt

1
CCCCA ,

(2.21)

where �t is the time step computed using eq. (A.54), and � are all the transport properties

like ⇢ and u.

After every 10 timesteps, we perform particle regularization using IPST. We com-

pute the shifting vector for the mth iteration (of the shifting iterations) using

�xm
i = hi

X

j

ei jWi j! j, (2.22)

where ei j = xi j/|xi j|. The new particle position

x̃m+1
i = xm

i + �xm
i , (2.23)

is computed. The particles are shifted until the criterion

|max(�m) � �o| < ✏, (2.24)

is satisfied up to a maximum of 10 iterations, where �m = h2 P
j Wi j, �o is the value for

uniform distribution, and ✏ is an adjustable parameter. In order to keep the approximation

of the particle O(h2) accurate, we update the particle properties after shifting by

�(x̃i) = �(xi) + (x̃i � xi) · r�(xi), (2.25)

where x̃i is the final position after iterative shifting, � is the property to be updated, and

r�(xi) is the gradient of the property on the last position computed with the Bonet cor-

rection. We refer to the scheme discussed above as L-IPST-C (Lagrangian with iterative

PST and coupled_c viscosity formulation).
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2.3.4 The e↵ect of co on convergence

In the schemes discussed in the previous section, we impose artificial compress-

ibility (AC) using the EOS, which is O(M2) as discussed in section 1.4.2. Chorin (1967)

originally proposed this method to obtain steady-state solutions of an incompressible flow.

Artificial compressibility with dual-time stepping may be used to achieve truly incom-

pressible time-accurate results. We achieve the incompressibility limit when co ! 1.

Therefore, in order to increase the accuracy at higher resolution, a higher speed of sound

must be used. We show the e↵ect of the speed of sound on the convergence of the scheme

in section 2.4.2.

2.3.5 Variations of the SOC scheme

In this section, we show that the L-IPST-C scheme presented in the section 2.3.3

can be easily converted into other models for improved accuracy and ease of calculation.

We note that regardless of the model employed, the discretizations from table 2.6 must be

used to achieve SOC.

In order to remove high-frequency oscillations, one could modify the continuity

equation, given by
d⇢
dt
= �⇢r · u + Dr2⇢, (2.26)

This modification corresponds to the �-SPH scheme discussed in appendix A.5.2. How-

ever, we employ coupled_c formulation to discretize the density damping term. we

could also use the linear equation of state proposed by Adami et al. (2013) to evaluate p,

given by

p = c2
o(⇢ � ⇢o). (2.27)

This EOS helps significantly reduce spurious pressure oscillation while simulating us-

ing traditional SPH schemes. Apart from the above minor modification, we propose the

following major variation of the L-IPST-C scheme.

Variation in the particle shifting technique

In the L-IPST-C scheme, every 10 timestep, IPST is employed to achieve uniform distri-

bution of particles. Lind et al. (2012) proposed a non-iterative method where particles are

shifted by

�xi = 0.5
h2

�t

X

j

2
666641 + 0.2

 
Wi j

W(�x)

!4377775rWi j! j, (2.28)

where W(�x) is the kernel function value at the initial particle spacing (assuming uni-

form). We apply the above shifting after every iteration. Similar to IPST, the properties of
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the particle are updated using eq. (2.25). We refer to this scheme as L-PST-C (Lagrangian

with PST and coupled_c viscosity formulation).

SOC EDAC scheme

In the EDAC scheme, the pressure is evolved instead of density using the continuity equa-

tion. Taking the derivative of eq. (2.27), we get

dp
dt
= c2

o
d⇢
dt
. (2.29)

Similarly,

r2 p = c2
or2⇢. (2.30)

Therefore, putting eq. (2.26) in eq. (2.29) and using eq. (2.30), we get

dp
dt
= �⇢c2

or · u + Dc2
or2⇢

= �⇢c2
or · u + Dr2 p.

(2.31)

We use div_c to discretize the divergence of velocity and coupled_c for the pressure

damping term. Furthermore, we recover the artificial density ⇢ by inverting the linear

equation of state, given by

⇢ =
p
c2

o
+ ⇢o. (2.32)

The momentum equation is discretized as in the original L-IPST-C scheme and IPST

is used to regularize the particle distribution. We refer to this method as PE-IPST-C

(pressure evolution with IPST and coupled_c viscosity formulation).

Remeshing in place of PST

The PST is used to regularize the particle distribution. Hieber et al. (2008) demonstrated

the use of remeshing to reinitialize the particle position. The remeshing is performed

using the M4 kernel given by

M4(q) =

8>>>>>>>><
>>>>>>>>:

1 � 5q2

2 +
3q3

2 0  q < 1,
(1�q)(2�q)2

2 1  q < 2,

0 q � 2.

(2.33)

The property � on the regular grid is computed using

�(x̃i) =
P
�(x j)M4(|x̃i � x j|, h)
P

M4(|x̃i � x j|, h)
, (2.34)
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where x̃ are points on a regular Cartesian mesh. The remeshing procedure can be per-

formed every few steps; however, we perform remeshing after every timestep. We use the

coupled formulation for viscosity. We refer to this method as L-RR-C (Lagrangian with

remeshing regularization and coupled_c viscosity formulation).

Replacing PST with transport velocity formulation

In the L-IPST-C scheme, the particle regularization is performed after the timestep. How-

ever, particle regularization can be included in the momentum equation as a regularization

force. The regularization force is employed in TVF, �+SPH, and ALE-SPH formulations

as discussed in appendix A.5. Thus the particles are advected using the transport velocity,

ũ = u + �u, where �u is the shifting velocity, and the displacement is given by

xn+1
i = xn

i + �t(ui + �ui). (2.35)

The new continuity and momentum equations are given by

d̃⇢
dt
= �⇢r · u + Dr2⇢ + �u · r⇢,

d̃u
dt
= �rp

⇢
+ ⌫r2u + �u · ru,

(2.36)

where d̃(·)
dt =

@(·)
@t + ũ · r(·). In this method, we employ SOC approximations mentioned

in table 2.6 along with correction proposed in appendix A.6. The shifting velocity is

computed as

�ui = �M(2h)co

X

j

2
666641 + 0.2

 
Wi j

W(�x)

!4377775rWi j! j. (2.37)

We refer to this scheme as TV-C (Transport velocity and coupled_c viscosity formula-

tion).

SOC Eulerian scheme

The Eulerian method solves the equation of motion on a stationary grid. In the Eulerian

description, the continuity equation is written as

@⇢

@t
= �⇢r · u � u · r⇢. (2.38)

Since the artificial fluid density ⇢ is not the same as the particle density  , we do not

ignore the last term; this is unlike what is done by Nasar et al. (2019). The momentum

equation is written as
@u
@t
= �rp

⇢
+ ⌫r2u � u · ru. (2.39)
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We discretize all the terms using SOC operators listed in table 2.6.

These set of equations can be derived using the TV-C method by setting �ui = �ui.

This substitution makes the transport velocity in eq. (2.35) equal to zero; thus the particle

does not move. The modified equation on setting �ui = �ui in eq. (2.36), we get

@⇢

@t
= �⇢r · u + Dr2⇢ � u · r⇢,

@u
@t
= �rp

⇢
+ ⌫r2u � u · ru.

(2.40)

Therefore, we recover the governing equation for the Eulerian method. We refer to this

method as E-C (Eulerian and coupled_c viscosity formulation).

Similarly, the scheme where the viscous term is discretized using Fatehi_c and

Korzilius formulation are referred to as L-IPST-F and L-IPST-K, respectively.

2.4 Results and discussions
In this section, we compare the solution obtained from di↵erent schemes for the Taylor-

Green, Gresho-Chan vortex, and incompressible shear layer problems. We first compare

the L1 error in velocity, pressure, and linear and angular momentum conservation of the

L-IPST-C with existing schemes. In order to observe the e↵ect of co on the convergence,

we solve the Taylor-Green problem with di↵erent speeds of sound using the L-IPST-C

and L-IPST-F schemes. For the highest value of co = 80m/s, we compare the results

using di↵erent variations of the SOC schemes. In order to observe the conservation prop-

erty, we compare the solutions for inviscid problems viz. incompressible shear layer and

Gresho-Chan vortex using existing schemes as well as the SOC schemes. Furthermore,

we compare the SOC and existing schemes for long-time simulations for all the test cases.

Finally, we compute the cost of computation versus accuracy for all the schemes.

We implement the schemes using the open source PySPH (Ramachandran et

al., 2021) framework and automate the generation of all the figures presented in this

manuscript using the automan framework (Ramachandran, 2018).

2.4.1 Comparison with existing SPH schemes

In this section, we compare the following schemes:

1. The Transport Velocity Formulation (TVF) proposed by Adami et al. (2013) (see

appendix A.5.3).

2. The Entropically Damped Artificial Compressibility (EDAC) SPH formulation pro-

posed by Ramachandran et al. (2019) (see appendix A.5.4).
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3. The improved �-SPH formulation �+SPH proposed by Sun et al. (2019) (see ap-

pendix A.5.5).

4. The Eulerian WCSPH (EWCSPH) scheme proposed by Nasar et al. (2019) (see

appendix A.5.6).

5. The L-IPST-C formulation discussed in section 2.3.3.

In order to compare these schemes, we consider the Taylor-Green vortex problem.

We choose this problem since it is periodic, has no solid boundaries, and admits an exact

solution 2. The solution to the Taylor-Green problem is given by

u = �Uebt cos(2⇡x) sin(2⇡y),

v = Uebt sin(2⇡x) cos(2⇡y),

p = �0.25U2e2bt(cos(4⇡x) + cos(4⇡y)),

(2.41)

where b = �8⇡2/Re, where Re is the Reynolds number of the flow. We consider Re = 100

and U = 1m/s. For the Lagrangian schemes, we consider a perturbed periodic (PP)

arrangement of particles shown in fig. 2.1 for di↵erent resolutions. At t = 0 we initialize

the pressure p and velocity (u, v) using eq. (2.41) for all the schemes. Since the fluid

density ⇢ is a function of pressure, we initialize density inverting eq. (2.15). In the case of

the EWCSPH scheme, we consider an unperturbed periodic (UP) arrangement of particles

and initialize the ⇢ using the prescribed pressure. We compute the L1 error in pressure and

velocity by

L1( f , h) =
X

j

X

i

| f (xi, t j) � fo(xi, t j)|
N

�t, (2.42)

where h = h�x�x is the smoothing length of the kernel, �t is the timestep, N is the total

number of particles in the domain, f is either pressure or velocity, and fo is the exact value

obtained using eq. (2.41). The particle spacing �x is set according to the resolution. We

consider resolutions of 50⇥50 to 500⇥500 particles in a 1m⇥1m periodic domain. In order

to isolate the e↵ect of spatial approximations on the convergence, we set the timestep

�t = 0.3h/(U + co), where h = 1.2/500m is set corresponding to highest resolution,

co = 10U, for all the simulations. We run all the simulations for 1 timestep and observe

convergence. We choose one timestep since most of the schemes considered diverge.

In fig. 2.12, we plot the L1 error evaluated using eq. (2.42) for pressure and velocity

in the domain for di↵erent schemes. Clearly, none of the schemes show convergence in

pressure. This lack of convergence is present because the initial velocity is divergence-

free, so there is no change in density and, thereby, pressure. We observe that the EDAC,
2We consider boundaries in chapter 6.
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Figure 2.12 : Convergence of L1 error in pressure (left) and velocity (right) with the

change in resolution. Re = 100, co = 10m/s, �t = 6.54 ⇥ 10�5s and only

1 timestep taken.

EWCSPH, and L-IPST-C schemes are almost four orders more accurate than the TVF and

�+SPH schemes. In the case of both TVF and �+SPH schemes, we link the pressure with

particle density  , which is a function of the particle configuration. Since the particle

positions are a result of the particle shifting, and therefore, the pressure is incorrectly

captured. On the other hand, the other schemes either use a pressure evolution equation

(EDAC) or a fluid density to evaluate pressure. In the case of the EWCSPH scheme, we

initialize density using the pressure values in eq. (2.15) which results in better accuracy.

The L1 error in velocity diverges in the case of the TVF and EDAC schemes since

these use a symmetric form of type sym2 in table 2.2 to discretize the momentum equa-

tion. Whereas, in the case of the �+SPH scheme, sym1 type of discretization is employed,

leading to less errors. Moreover, the �+SPH scheme uses a consistent formulation, and

both TVF and EDAC schemes are inconsistent when the shifting (transport) velocity is

added to the momentum equation Sun et al. (2019). The EWCSPH and L-IPST-C formu-

lations show convergence (not second-order) as expected. We observe that in the velocity

convergence, a constant leading error term dominates, resulting in flattening at higher res-

olutions. Since we use accurate second-order formulations in L-IPST-C and EWCSPH 3

formulations, the only equation which is not converging with the resolution is the equation

of state.

In this section, we have focused on highlighting the e↵ect of using fluid density

⇢ di↵erent than the particle (or numerical) density  . The use of density as a transport
3It is second-order accurate since a uniform stationary grid is used.
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Name FT
Fmax

Tr L1(|u|)(O) L1(p)(O)

L-IPST-C 1.34e-05 3.36 1.18e-07(1.42) 6.41e-05(0.00)

EWCSPH 7.03e-15 2.25 3.13e-07(0.38) 2.10e-05(0.00)

EDAC 1.88e-07 1.32 1.68e-05(-1.24) 7.00e-05(-0.07)

�+S PH 2.19e-05 1.49 5.69e-05(0.00) 2.03e-01(0.00)

TVF 3.70e-16 1.00 9.45e-04(-0.88) 2.88e-01(-0.07)

Table 2.7 : Table showing total force w.r.t. the maximum force in the domain and the

time taken for 1 iteration w.r.t. the TVF scheme for all the schemes. The last

two columns show L1 error in velocity and pressure at 500 ⇥ 500 resolution

with the order of convergence in the brackets.

property allows for a superior convergence rate and independence of density from particle

positions. In contrast to this, the use of numerical density as a function of particle position

is consistent with the volume used for the SPH approximation. In TVF, �+SPH, EDAC,

and EWCSPH schemes, there is no such distinction, i.e. ⇢ =  , and this density is used

to compute numerical volume ! j = mj/⇢ j = mj/ j. The poor convergence for these

schemes shows that it is important to treat the fluid and numerical densities di↵erently.

We also compare the linear momentum conservation and time taken to evaluate the

accelerations for the case with 500⇥500 particles. As shown in Bonet et al. (1999), linear

momentum is conserved when the total force,
P

i Fi = 0, where the sum is taken over all

the particles and Fi =
rpi
⇢i
+ ⌫r2ui. In the table 2.7, we tabulate the total force and the

time taken by the scheme for one timestep with the errors and order of convergence in

pressure and velocity for the 500⇥500 resolution case. It is clear that the TVF and EWC-

SPH schemes conserve linear momentum, and the TVF scheme takes the least amount of

time. The EDAC and the �+SPH scheme does not conserve linear momentum exactly. In

the case of the EDAC scheme, the use of average pressure in the pressure gradient eval-

uation results in a lack of conservation. Whereas, in the case of �+SPH, the asymmetry

of the shifting velocity divergence causes a lack of conservation. The L-IPST-C scheme

is known to be non-conservative; however, the value is comparable to other schemes.

The time taken by the L-IPST-C scheme is significantly higher due to the evaluation of

correction matrices.

2.4.2 Convergence with varying speed of sound

In this section, we compare the convergence of the L-IPST-F and L-IPST-C schemes

with change in AC parameter, i.e. the speed of sound co. We consider the Taylor-Green
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problem; however, we run the simulation for t = 0.5s. In fig. 2.13, we plot the L1 error

in the pressure and velocity for both schemes and di↵erent co. We observe that both

L-IPST-C and L-IPST-F methods are significantly a↵ected by the change in co value,

as expected. In the case of pressure, with the increase in the co value, the error in the

lower resolutions increases; however, the convergence is monotonic. Clearly, we attain

the increase in the order of convergence in case of the pressure due to increased error

scales at lower resolutions. The increase in error is attributed to the inability of the SPH

operators to correctly capture a divergence-free velocity field as discussed in section 2.3.2.

However, on looking at the velocity convergence, both schemes attain SOC even at higher

resolutions. As observed in the case of the Laplace operator comparison in 2.2.3, the

use of Fatehi_c discretization used in L-IPST-F scheme o↵ers better accuracy than the

coupled_c discretization.

Figure 2.13 : Convergence rates for pressure (left) and velocity (right). The L-IPST-C

and L-IPST-F methods are compared for di↵erent values of co.

In table 2.8, we tabulate the total force, relative time, and the L1 error in pressure

and velocity with the order of convergence for 500 ⇥ 500 particles. We observe that at

a higher co value, the total force is higher compared to the simulation when co values

are lower. From the table, we can see that the use of the L-IPST-F scheme o↵ers better

accuracy at the cost of the extra time taken. However, the order of improvement in the

case of pressure is small. We also note that one can choose to use lower values of co at

lower resolutions and increase the value as the resolution increases to get the same rate of

convergence in velocity and better accuracy in pressure.
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Name FT
Fmax

Tr L1(|u|)(O) L1(p)(O)

L-IPST-C co = 20 7.13e-05 1.00 2.03e-04(1.38) 3.66e-03(0.93)

L-IPST-C co = 40 9.31e-05 2.15 7.94e-05(1.78) 2.09e-03(1.60)

L-IPST-C co = 80 1.44e-04 3.76 5.32e-05(1.93) 2.98e-03(1.85)

L-IPST-F co = 20 7.11e-05 1.23 1.80e-04(0.85) 3.77e-03(0.73)

L-IPST-F co = 40 5.99e-05 2.84 4.81e-05(1.44) 2.54e-03(1.31)

L-IPST-F co = 80 1.66e-04 5.46 1.36e-05(1.98) 3.52e-03(1.65)

Table 2.8 : Comparison of the total force, time taken relative to the L-IPST-C with co =

20m/s, L1 error in velocity and pressure at 500 ⇥ 500 resolution with order

of convergence in the brackets for di↵erent values of co.

2.4.3 Comparison of SOC variants

In this section, We simulate the Taylor-Green problem using co = 80m/s for a dura-

tion of 0.5s with di↵erent resolutions for schemes discussed in section 2.3.5. In addition,

we study the performance of the EWCSPH scheme since it is computationally e�cient

and accurate. In fig. 2.14 4, we plot the error in pressure and velocity for all the schemes.

In table 2.9, we tabulate the total force, relative time, L1 error in pressure and velocity at

500 ⇥ 500 resolution, and the order of convergence.

Figure 2.14 : Convergence rates for pressure (left) and velocity (right) of di↵erent vari-

ants of the SOC scheme.

4The cause of the non-monotonic behavior of the TV-C in the figure is not known, but the result is

reproducible.
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Name FT
Fmax

Tr L1(|u|)(O) L1(p)(O)

E-C 8.13e-15 1.19 5.11e-05(1.94) 1.50e-03(0.71)

EWCSPH 1.07e-14 1.00 3.25e-05(1.57) 1.13e-02(-0.20)

L-IPST-C 1.44e-04 1.53 5.32e-05(1.93) 2.98e-03(1.85)

L-PST-C 2.64e-06 2.02 7.31e-05(1.84) 8.93e-03(1.68)

L-RR-C 1.51e-18 1.41 3.74e-05(1.92) 9.11e-04(0.65)

PE-IPST-C 6.17e-05 1.65 5.05e-05(1.96) 3.01e-03(1.84)

TV-C -5.01e-06 1.88 1.06e-04(2.18) 1.51e-02(2.14)

Table 2.9 : Comparison of the total force, time taken relative to L-IPST-C, L1 error in

velocity and pressure at 500 ⇥ 500 resolution with order of convergence in

brackets for variation of SOC scheme with co = 80m/s.

The L-IPST-C and PE-IPST-C overlap in both pressure and velocity convergence

plots, and these are both approximately second-order. Compared to L-IPST-C, the L-PST-

C shows a lower convergence rate, and TV-C shows higher order of convergence, whereas

E-C and L-RR-C show very poor convergence rates in pressure; however, the L-RR-C

method shows very low errors in pressure. The EWCSPH has a negative convergence rate

in pressure. While the TV-C shows a high convergence rate, it has much larger errors

than all the other schemes considered for both pressure and velocity. The E-C, L-IPST-

C, L-RR-C, and PE-IPST-C shows high convergence rates in velocity, as expected. The

L-PST-C shows a slightly high error and 1.84 convergence rate. The EWCSPH shows a

lower convergence rate of 1.57 but is the most accurate of all the schemes regarding the

velocity error.

The TV-C scheme shows low accuracy since we perform the shifting using an addi-

tional term in the momentum equation compared to the PE-IPST-C and L-IPST-C. This

decrease in accuracy is also visible in the case of velocity. The L-PST-C scheme show

higher error suggesting that the non-iterative PST does not perform the required amount of

regularization. Both L-RR-C and E-C are comparable and most accurate. These schemes

have lower errors since the particles are fixed on a cartesian grid resulting in accurate

computation of divergence as discussed in section 2.3.2. The pressure convergence flat-

tens since it reaches the limit of accuracy possible with this value of co = 80m/s, and

further accuracy may be seen by increasing this further.

Clearly, the total force in the case of E-C, L-RR-C, and EWCSPH schemes is zero

since we compute the acceleration on a uniform Cartesian grid of particles. However, the

total force in other schemes is accurate to order 10�5. The times taken shows that L-PST-
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C is the highest since we apply the PST at every timestep. The TV-C involves many terms

in the equations and therefore takes a lot of time. The E-C and EWCSPH take the least

time since they do not use a PST 5. The L-RR-C, L-IPST-C, and PE-IPST-C take a similar

amount of time.

2.4.4 Comparison of conservation errors

Thus far, we have looked at the convergence of the various schemes. In this section,

we look at the existing schemes and the new schemes listed in table 2.9 from the perspec-

tive of conservation of linear and angular momentum. We solve the Gresho vortex and

incompressible shear layer using all the schemes discussed.

The Grehso vortex

We consider the Gresho vortex problem (Gresho et al., 1990), which is an inviscid incom-

pressible flow problem having the pressure and velocity fields given by

p(r) =

8>>>>>>>><
>>>>>>>>:

12.5r2 + 5 0  r < 0.2,

12.5r2 � 20r + 4 ln(5r) + 9 0.2  r < 0.4,

3 + 4 ln(2) 0.4  r,

(2.43a)

u�(r) =

8>>>>>>>><
>>>>>>>>:

5r 0  r < 0.2,

2 � 5r 0.2  r < 0.4,

0 0.4  r,

(2.43b)

(2.43c)

where u�(r) is the radial velocity.

We consider an unperturbed periodic domain of size 1 ⇥ 1 with the center at (0, 0).

We set the kinematic viscosity, ⌫ = 0, and the time step and other properties as done in

the Taylor-Green problem. The problem is simulated until t = 3s. Since the problem is

inviscid, we expect the scheme to retain the velocity and pressure field. We do not use

artificial viscosity in the simulations for any of the schemes. However, we use density or

pressure damping as given in eq. (2.26) or eq. (2.31) to reduce the pressure oscillations.

Without this, the solution becomes unstable in a short amount of time. We perform the

simulation of all the schemes listed in table 2.7 except the EWCSPH scheme 6. We note
5These methods can be made even faster since the neighbors need not be updated, and the correction

matrices can also be computed once and saved.
6We discuss the failed simulations in appendix A.7.
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Figure 2.15 : The velocity of particles with the distance from the center of the vortex

(left) and the x-component of the total linear momentum (right) for exist-

ing and L-IPST-C schemes.

Figure 2.16 : The velocity of particles with the distance from the center of the vortex

(left) and the x-component of the total linear momentum (right) for the

variation of the SOC scheme.

that using an initial perturbed particle configuration results in very di↵used results for all

schemes except the L-IPST-C.

In fig. 2.15, we plot the velocity of the particles with the distance r from the center

(on the left) and the x-component of the total linear momentum with time for a 100⇥ 100

particle simulation, for all the schemes. The L-IPST-C scheme retains the velocity profile

very well. The �+SPH, EDAC, and TVF schemes show di↵usion due to inaccuracy in the

pressure gradient evaluation. Except for the TVF scheme, the rest show a finite increase

in the momentum bounded at 10�4. Clearly, approximate linear momentum conservation

is su�cient to obtain accurate results in the case of weakly compressible flows.
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We also perform the simulations with di↵erent versions of the SOC scheme listed in

table 2.9 7. In fig. 2.16, we plot the velocity with the distance from the center and the x-

component of the linear momentum with time for 100 ⇥ 100 particle simulation. Clearly,

all the schemes are accurate and approximately conserve linear momentum as expected.

Figure 2.17 : The angular momentum variation with time for Gresho-Chan vortex for

di↵erent schemes.

In fig. 2.17, we show the angular momentum variation with time for di↵erent

schemes. None of the schemes conserve angular momentum, but for the SOC schemes,

the variations are very small and at O(5 ⇥ 10�4).

The incompressible shear layer

The incompressible shear layer simulates the Kelvin-Helmholtz instability in an incom-

pressible flow. This test case produces non-physical vortices for the schemes where the

operators are under-resolved even when the scheme is convergent (Di et al., 2005). The

initial condition for the velocity in the x direction is given by

u =

8>>>><
>>>>:

tanh(30(y � 0.25)) y  0.5,

tanh(30(0.75 � y)) y > 0.5.
(2.44)

In order to begin the instability, a small velocity is given in y direction

v = 0.05sin(2⇡x). (2.45)

We consider a small viscosity ⌫ = 1/10000. We simulate the problem using all the

schemes listed in table 2.7. In fig. 2.18 and fig. 2.19, we plot the vorticity field for the
7The L-RR-C, TV-C, and E-C schemes fail to complete the simulation, and these are discussed in the

appendix A.7.
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schemes 8 discussed in this work. Unlike the inviscid problem of the Gresho-Chan vor-

tex, the scheme EWCSPH, TV-C, and E-C shows results matching other SOC schemes.

In fig. 2.18, we observe that the TVF scheme and �+SPH scheme show high-frequency

oscillations, while the EDAC scheme is much better; However, it shows some undesirable

contours surrounding the eye of the vortex in blue color.

Figure 2.18 : Vorticity contour plot for 500 ⇥ 500 resolution for existing and L-IPST-C

schemes.

8The L-RR-C method failed to run due to discontinuity in the initial velocity field.
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Figure 2.19 : Vorticity contour plot for 500 ⇥ 500 resolution for all the variation of the

SOC scheme.

2.4.5 Long time simulations

In this section, we study the conservation for long-time simulations using the EDAC,

TVF, and L-IPST-C schemes. We consider the Taylor-Green and Gresho-Chan with the

same condition as before. We consider a UP particle distribution for all the schemes.

We simulate the Taylor-Green problem for 5s at Re = 100 compared to the final time

of 0.5s in the previous simulations for all the schemes. In fig. 2.20, we plot the velocity

damping and the kinetic energy of the flow as a function of time. The TVF scheme shows

a significant deviation from the exact result, whereas the kinetic energy remains close
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Figure 2.20 : The maximum velocity decay (left) and kinetic energy of the flow with

respect time (right) for the Taylor-Green problem.

to other scheme solutions. We note that the TVF scheme conserves linear momentum

exactly.

We next simulate the Gresho-Chan vortex problem for 7s compared to the final time

of 3s in section 2.4.4. In fig. 2.21, we plot the velocity as a function of r and the linear

and angular momentum with respect to time for all the schemes. We observe that the TVF

scheme does not capture the physics of the problem however conserves linear momentum

but does not conserve angular momentum. In the case of the EDAC scheme, the physics

is captured better. The linear momentum is not conserved, the solution loses angular

momentum by a small amount, and the peak of the velocity distribution is not captured

accurately. The L-IPST-C scheme retains the velocity field, and both linear and angular

momentums are approximately conserved. After 7 seconds, the L-IPST-C scheme is no

longer stable, and the velocity field is not captured accurately.

These simulations suggest that even if a scheme is conservative like TVF, it may not

produce accurate results. However, for a convergent scheme like the L-IPST-C, the results

are accurate, and despite there being no exact conservation, approximate conservation is

seen.

2.4.6 Cost of computation

In this section, we compare the cost of computation of all the schemes considered

in this study. We simulate the Taylor-Green problem for 5000 timesteps with 50, 100,

and 200 resolutions for all the schemes. We use an Intel(R) Xeon(R) CPU E5-2650 v3

processor and execute all the simulations in serial. In fig. 2.22, we plot the L1 error in

velocity computed using eq. (2.42) as a function of time taken for the simulation. Clearly,

all the SOC schemes are close to each other in terms of errors. The E-C and EWCSPH

schemes take very little time and are very accurate; however, EWCSPH is not convergent
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Figure 2.21 : The velocity of all the particles in the domain with distance from the center

(top left), linear (top right) and angular (bottom) momentum with respect

to time for Gresho-Chan vortex problem.
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Figure 2.22 : The L1 error in velocity with respect to the time taken to evaluate 5000

timesteps for all the schemes discussed in the previous sections.

in pressure as shown in section 2.4.1. The EDAC scheme has lower error comparable to

the SOC schemes; however, its convergence rate reduces with an increase in resolution.

We show that despite having higher time taken by the SOC schemes, they achieve higher

accuracy with fewer particles. For some schemes, these accuracy levels are not achievable

at all.

2.5 Summary
In this chapter, we have performed a numerical study of the accuracy and convergence

of a variety of SPH schemes in the context of weakly-compressible fluids. Based on the

numerical study performed in the previous sections, we summarize the key observations

as follows:

1. Choice of smoothing kernel:

We first considered the SPH approximation of a function and its derivative using

di↵erent kernels. All the kernels considered here show second-order convergence

when the support radius is suitably chosen. The accuracy is marginally a↵ected by

the change in the type of kernel. The smoothing error of an SPH approximation

scales as O(h2), and this necessitates that the smoothing length of the kernel is as

small as possible. This implies that h�x be small. As is well known, the discretiza-

tion errors scale as O
✓⇣
�x
h

⌘�+1
◆

and this necessitates that the smoothing radius be

larger. These two requirements are contradictory. We find that by using a modest

h = 1.2�x, along with the kernel corrections of Bonet et al. (1999) or Liu et al.
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(2006) we are able to obtain close to second-order convergence for the kernels con-

sidered in this work. It holds up to a resolution of L/�x = 500, where L = 1m,

which appears to be among the highest resolutions we have seen in the literature

concerning the convergence of SPH methods. In the literature, we find kernels like

the cubic spline to demonstrate pairing instabilities (Dehnen et al., 2012). We can

avoid this instability by using a particle shifting technique (PST).

2. Particle density and fluid density:

We recommend that one employ the fluid density ⇢ in the governing di↵erential

equation (see eq. (2.14)) as a property that convects with the particle. The approx-

imation of the SPH operators should not be a function of a property of the fluid,

i.e. density (as integration volume !i = mi/⇢i used in existing schemes, where ⇢

is evaluated from the continuity equation). We obtain the integration volume by

eq. (2.16) where the mass and kernel support radius of particles is kept constant.

3. Choice of suitable operators:

The SPH approximation of operators like the gradient, divergence, and Laplacian

must be chosen carefully. In this work, we recommend two methods for gradi-

ent approximation and three methods for viscous term approximation that ensure

second-order convergence. The approximations which ensure pair-wise linear mo-

mentum conservation are always divergent. Furthermore, the widely used artificial

compressibility assumption makes the scheme O(M2) accurate. We recommend

using high co values or dual-time stepping criteria to achieve convergence.

4. SOC scheme and variations:

We demonstrate Eulerian as well as Lagrangian SPH schemes that are second-order

convergent. We show that the Eulerian schemes capture the divergence accurately

due to symmetry in the particle distribution resulting in better accuracy in pres-

sure. We derive a pressure evolution equation using the continuity equation that

resembles the EDAC SPH scheme in literature. We show that the PST step in

the Lagrangian method can be replaced by a remeshing step which is another mo-

ment conserving regularization. However, remeshing is not stable in the presence

of jumps in the properties as observed in the case of the Gresho vortex (see ap-

pendix A.7) and incompressible shear layer. The PST step can be included in the

momentum equation resulting in the �+SPH scheme. From the �+SPH method, one

can obtain the Eulerian form of the WCSPH method by setting the shifting veloc-

ity to �u. All these schemes are SOC when we use a second-order convergent
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approximation for the operators. We show that even though the schemes are non-

conservative in the absolute sense, approximate conservation also produces accurate

results in the case of incompressible flows.

Thus, by a judicious choice of discretization, particle shifting, and a separation of

the fluid and particle densities, we have shown that second-order convergence is possible

using the SPH method for weakly-compressible flows.

In this chapter, we used the method of exact solution (MES), where for all the

problems, an exact solution was available. Unfortunately, the method takes a signifi-

cant amount of time due to the high artificial speed of sound to assess the convergence of

a scheme. Also, the exact solutions of NS equations for three-dimensional domains are

very rare. Furthermore, the boundary due to solid body, inlet or outlet, and free surface

cannot be studied. In the next chapter, we discuss other methods used to obtain the rate

of convergence of the SPH method.





Chapter 3

Verification techniques for WCSPH
schemes

In the SPH literature, the accuracy of the SPH scheme is shown qualitatively by com-

paring it with established solvers. The rate of convergence is rarely reported. The com-

putation of the rate of convergence of a computer code that solves physical phenomena

comes under a broader concept called validation and verification. Salari et al. (2000) for-

mally introduced the concept of validation and verification of a code used to solve partial

di↵erential equations, as discussed in section 1.5. Both verification and validation of a

computer code are equally important. Verification of the accuracy and convergence of a

code is found using exact solutions, solutions from existing solvers, experimental results,

or manufactured solutions. The verification methods can also be used to identify bugs in

the implementation. On the other hand, validation of the code ensures that the governing

equations (or mathematical model) are appropriate for the physics of the problem and

often involves comparison with experimental results.

In this chapter, we focus on the code verification techniques used in SPH. Salari

et al. (2000) classified di↵erent methods for code verification as follows:

1. Trend test: An expert judgment is used to verify the solution obtained from the

code. For example, the velocity of the vortex in a viscous periodic domain should

diminish with time. If the code results in an increase of the velocity in the domain,

then there is an error in the implementation.

2. Symmetry test: It is ensured that the solution obtained does not change if the do-

main is rotated or translated. For example, if we implement an inlet assuming the

flow in the x direction, we will get an erroneous result on rotating the domain by 90

degree.

59
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3. Comparison test: The solution obtained from the code is compared with the solu-

tions from an established solver or experiment. The established solution and exper-

iment do not always have a solution at all data points. Therefore, in this method,

one is forced to evaluate the solution at certain prescribed locations.

4. Method of exact solution (MES): A problem is solved for which the exact solution

is known. In the context of fluid dynamics, a closed-form solution is only available

for simple problems.

5. Method of manufactured solutions (MMS): An artificial solution fo(x, y, z, t) is man-

ufactured for the governing equation of the form L f = g, where L is di↵erential

operator, and g = g(x, y, z, t) is an arbitrary forcing function. Since the fo is not the

solution, on substituting it in the governing equations, a residue R = L fo � g is ob-

tained. In the implementation, the residue R is added as a source term to recover the

manufactured solution fo. The MMS is widely used to verify codes in finite volume

methods (Bond et al., 2007) and finite element methods (Waltz et al., 2014).

We first discuss the drawbacks of the currently used verification methods in the con-

text of WCSPH schemes. The MES used is computationally expensive. Furthermore, the

method could not pinpoint the root cause of the lack of convergence of a code. More-

over, these methods cannot be applied to determine the rate of convergence of boundary

condition implementations. Feng et al. (2016) used the method of manufactured solu-

tions (MMS) to verify their SPH implementation. However, the particles do not move;

therefore, it is no di↵erent from a traditional application of MMS in mesh-based methods.

We explore the well-established MMS in the context of WCSPH schemes. We, for the

first time, show how one can apply the MMS to carefully study the accuracy of a modern

WCSPH implementation.

We first obtain a suitable initial particle configuration to be used in the simulation.

We then systematically develop an approach to construct a Manufactured Solution (MS)

for established WCSPH schemes as well as the proposed second-order schemes. We

show how this can be applied to any specified domain shape. We show how to apply the

MMS in the context of both Eulerian and Lagrangian SPH schemes. We then demonstrate

how the MMS can help to debug an implementation by deliberately changing one of the

equations in the second-order convergent scheme and showing the e↵ect of the change in

the convergence plot. We demonstrate that the method can be used to study convergence

at extreme resolutions and for three-dimensional cases.
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3.1 Drawback of current verification methods
In this section, we compare solutions for the Taylor-Green vortex and lid-driven cavity

problems, which are examples of MES and comparison test, respectively.

The Taylor-Green problem has an exact solution given by

u = �Uebt cos(2⇡x) sin(2⇡y),

v = Uebt sin(2⇡x) cos(2⇡y),

p = �0.25U2e2bt(cos(4⇡x) + cos(4⇡y)),

(3.1)

where b = �8⇡2/Re, where Re is the Reynolds number of the flow. We consider Re = 100

and U = 1m/s. We solve this problem for three di↵erent resolutions viz. 50⇥50, 100⇥100,

and 200 ⇥ 200 for a two-dimensional domain of size 1m ⇥ 1m for 2s using the L-IPST-C

scheme. However, we discretize the pressure gradient using the formulation given by
*rp
⇢

+

i
=

X

j

(pj + pi)
⇢i

rWi j! j. (3.2)

In fig. 3.1, we plot the decay in the velocity magnitude with time for di↵erent resolutions

Figure 3.1 : The decay in velocity magnitude for di↵erent resolutions compared with

the exact solution for the Taylor-Green problem.

compared with the exact solution. Clearly, the decay in the velocity magnitude is very

close to the expected result.

In the lid-driven cavity problem, we consider a two-dimensional domain of size

1m ⇥ 1m with 5 layers of ghost particles representing the solid particles. The top wall

at y = 1m is given a velocity u = 1m/s along the x-direction. We solve the problem
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using the L-IPST-C scheme for di↵erent resolutions for 10 sec. However, we discretize

the viscous term using the method proposed by Cleary et al. (1999) (see section 2.2.3). In

Figure 3.2 : The velocity along x and y directions along the center line x = 0.5m of the

domain for the lid-driven cavity problem.

fig. 3.2, we plot the velocity along the centerline x = 0.5m of the domain compared with

the result of Ghia et al. (1982). Clearly, the increase in resolution improves the accuracy.

We note that many researchers (as discussed in section 1.5.1) use the above approach

to verify their SPH schemes. For both problems discussed above, we use a discretization

that is not second-order accurate, as shown in section 2.2. Therefore, these verification

techniques are unable to detect issues in specific discretization in a scheme. In addition,

the simulations take a significant amount of time. For example, the 200 ⇥ 200 resolution

lid-driven cavity case took 150 minutes on an Intel(R) Xeon(R) CPU E5-2650 v3 pro-

cessor with 40 threads. In the case of the Taylor-Green problem, since the exact solution

is known, one can evaluate the L1 error in velocity or pressure. In fig. 3.3, we plot the

L1 error using eq. (2.42) in velocity as a function of particle spacing. The L1 error is

not second-order and diverges as we increase resolution from 100 ⇥ 100 to 200 ⇥ 200.

Furthermore, this result does not suggest the exact reason for the error.

In general, one cannot exercise specific terms in the governing di↵erential equation

in all the methods described above. Therefore, the source of the error cannot be deter-

mined. For example, the code may show convergence in the case of the Gresho-Chan

vortex problem (an inviscid problem) but fail for the Taylor-Green vortex problem due to

an issue with the discretization of the viscous term. It is only recently Antuono (2020)

proposed an analytic solution for three-dimensional Navier-Stokes equations has been
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Figure 3.3 : The L1 error in velocity for the Taylor-Green problem.

proposed. Other recent work of Sharma et al. (2019) has only focused on numerical in-

vestigation. Therefore, it is not easy to apply the MES in three dimensions. Furthermore,

such studies require an even larger computational e↵ort. Finally, we note that the Taylor-

Green vortex problem is for an incompressible fluid making it di�cult to test a WCSPH

scheme.

Therefore, in the context of SPH, the comparison and MES techniques are insuf-

ficient and ine�cient. We require a better method to verify the code before proceeding

to validation. The method of manufactured solutions o↵ers precisely such a technique,

which is described in the next section.

3.2 The method of manufactured solutions
In conventional finite volume and finite element schemes, it is mandatory to demonstrate

the order of convergence, and the MMS has been used for this, as discussed in section 1.5.

For the SPH method, obtaining second-order convergence has itself been a challenge

(Vacondio et al., 2020) as discussed in the previous chapter. Moreover, to the best of our

knowledge, the MMS method has not been applied in the context of SPH. In this work,

we use the principles of MMS to formally verify SPH codes in a fast and reliable manner.

The technique facilitates a careful investigation of the various discretization operators,

boundary condition implementation, and time integrators.

In MMS, an artificial or manufactured solution is assumed. Let us assume the man-

ufactured solution (MS) for ⇢, u, and p in eq. (2.14) are ⇢̃, ũ, and p̃, respectively. Since
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MS is not the solution of the eq. (2.14), we obtain a residue

s⇢ =
d⇢̃
dt
+ ⇢̃r · ũ,

su =
dũ
dt
+
r p̃
⇢̃
� ⌫r2ũ,

(3.3)

where s⇢ and su are the residue term for continuity and momentum equation, respectively.

Since we have the closed-form expression for all the terms in the RHS of eq. (3.3), we

may introduce the residue terms as source terms in the governing equations. We write the

modified governing equations as
d⇢
dt
= �⇢r · u + s⇢,

du
dt
= �rp

⇢
+ ⌫r2u + su.

(3.4)

Finally, we solve eq. (3.4). The addition of the source terms ensures that the solution is ⇢̃,

ũ, and p̃.

One must take a few precautions while constructing an artificial solution in the MMS

(Salari et al., 2000):

1. The MS must be Cn smooth where n is the order of the governing equations.

2. It must exercise all the terms, i.e., for any evolution equation, all the MS cannot be

time-independent.

3. The MS must be bounded in the domain of interest. For example, the MS u = tan(x)

in the domain [�⇡, ⇡] is not bounded thus, should not be used.

4. The MS should not prevent the successful completion of the code. For example,

if the code assumes the solution to have positive pressure, then the MS must make

sure that the pressure is not negative.

5. The MS should make sure that the solution satisfies the basic physics. For example,

the flux must be continuous in a shear layer flow with discontinuous viscosity.

We note that the MS may not be physically realistic. We modify the basic steps for MMS

proposed by Oberkampf et al. (2010) for use in the context of WCSPH as follows:

1. Obtain the modified form of the governing equations as employed in the scheme.

For example, in the case of the �-SPH scheme (Antuono et al., 2010), the continuity

equation used is
d⇢
dt
= �⇢r · u + Dr2⇢, (3.5)

where D = �hco is the damping used, and � is a numerical parameter. The additional

di↵usive term in eq. (3.5) must be retained while obtaining the source term.
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2. Construct the MS using analytical functions. The general form of MS is given by

f (x, y, t) = �o + �(x, y, t), (3.6)

where f is any property viz. ⇢, u, or p; �o is a constant, and �(x, y, t) is a function

chosen such that the five precautions listed above are satisfied.

3. Obtain the residue due to the manufactured solution as done in eq. (3.3).

4. Add the residue as a source term in the code appropriately. In SPH, the source term

s = s(x, y, z, t), is discretized as si = s(xi, yi, zi, t) where subscript i denotes the ith

particle.

5. Solve the modified equations using the code for di↵erent particle spacings/smooth-

ing lengths. The properties of the boundary particles are updated using the MS. We

note that in the context of WCSPH schemes, one should not evaluate the derived

quantities like the gradient of the velocity field using the MS on the solid boundary.

6. Evaluate the discretization error for each resolution. We evaluate the error using

eq. (2.42).

7. Compute the order of accuracy and determine whether the desired order is achieved.

The code involves discretization of the governing equations and appropriate imple-

mentation of the boundary conditions. The MMS can be used to determine the accuracy

of both. However, to obtain the accuracy of boundary condition implementations, the or-

der of convergence of the governing equations should be at least the order of the boundary

condition implementations (Choudhary et al., 2016).

3.2.1 Implementation of MMS

In this section, we discuss the implementation of MMS for a general meshless

method code. In order to avoid mistakes while evaluating the source term. We do not

perform the di↵erentiation manually. In this work, we use sympy (Meurer et al., 2017)

tool along with the mako python packages. We evaluate the gradient of a scalar as shown

in listing 3.1.

Listing 3.1 : Code for gradient of a scalar.

import sympy as sp

def grad(pres):

return [sp.diff(pres, x),
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sp.diff(pres, y),

sp.diff(pres, z)]

Similarly, the gradient of a vector is evaluated as shown in listing 3.2.

Listing 3.2 : Code for gradient of a vector.

def vec_grad(vel):

return [

sp.diff(vel[0], x),

sp.diff(vel[0], y),

sp.diff(vel[0], z),

sp.diff(vel[1], x),

sp.diff(vel[1], y),

sp.diff(vel[1], z),

sp.diff(vel[2], x),

sp.diff(vel[2], y),

sp.diff(vel[2], z)]

We evaluate the divergence of a vector as shown in listing 3.3.

Listing 3.3 : Code for divergence of a vector.

def div(vel):

return (sp.diff(vel[0], x) +

sp.diff(vel[1], y) +

sp.diff(vel[2], z))

The Laplacian is evaluated using the gradient and divergence functions as shown in listing

3.4.

Listing 3.4 : Code for Laplacian of a vector.

def laplace(vel):

gradv = vec_grad(vel)

return [div(gradv[0:3]), div(gradv[3:6]), div(gradv[6:9])]

Using the functions for gradient, divergence, and Laplacian evaluation, we can ob-

tain the source term for any given MS ⇢̃, p̃, and ũ as shown in listing 3.5.

Listing 3.5 : Code for evaluation of source term from continuity and momentum equa-

tions.

def continuity(rhoc, vel, rhocs, delta_coeff=0.0):

srho = sp.diff(rhoc, t) + dot(grad(rhoc), [us, vs, ws]) +\

rhocs * div(vel) - delta_coeff*h * laplace_scal(rhoc)
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return srho

def momentum_eq(vel, rhoc, p, rhocs, nu=0.0, comp=0):

adv = vec_mat_mul(vec_grad(vel), [us, vs, ws])

s_u = sp.diff(vel[comp], t) + adv[comp] + \

grad(p)[comp]/rhocs - nu*laplace(vel)[comp]

return s_u

In listing 3.5, we use rhoc, p, vel, rhocs, and nu for ⇢, p, u, ⇢ and ⌫, respectively. The

comp parameter is used to pass the component vector output. On evaluating the expression

for the source term, we save the expression in YAML file format. An example of the

format is given in listing 3.6.

Listing 3.6 : YAML format for saving the source terms.

py:

mms1:

gradv0: 2*pi*cos(2*pi*x)*cos(2*pi*y)

gradv1: -2*pi*sin(2*pi*x)*sin(2*pi*y)

gradv2: ’0’

gradv3: 2*pi*sin(2*pi*x)*sin(2*pi*y)

gradv4: -2*pi*cos(2*pi*x)*cos(2*pi*y)

gradv5: ’0’

gradv6: ’0’

gradv7: ’0’

gradv8: ’0’

p: cos(4*pi*x) + cos(4*pi*y)

rhoc: rhoc0 + (cos(4*pi*x) + cos(4*pi*y))/c0**2

spp: -4*pi*u*sin(4*pi*x) - 4*pi*v*sin(4*pi*y)

srho: -4*pi*u*sin(4*pi*x)/c0**2 - 4*pi*v*sin(4*pi*y)/c0**2

su: 2*pi*u*cos(2*pi*x)*cos(2*pi*y) -\

2*pi*v*sin(2*pi*x)*sin(2*pi*y) - 4*pi*sin(4*pi*x)/rhoc

sv: 2*pi*u*sin(2*pi*x)*sin(2*pi*y) -\

2*pi*v*cos(2*pi*x)*cos(2*pi*y) - 4*pi*sin(4*pi*y)/rhoc

sw: ’0.0’

u: sin(2*pi*x)*cos(2*pi*y)

v: -sin(2*pi*y)*cos(2*pi*x)

w: ’0.0’
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We use the YAML file saved in this format to generate the python code in PySPH

framework using mako template as shown in listing 3.7.

Listing 3.7 : Mako template for generating the source code

def get_props(x, y, z, t, c0):

from numpy import sin, cos, exp, log

u = (${formula[’u’]}) * np.ones_like(x)

v = (${formula[’v’]}) * np.ones_like(x)

w = (${formula[’w’]}) * np.ones_like(x)

p = (${formula[’p’]}) * np.ones_like(x)

rhoc = p/c0**2 + 1.0

return u, v, w, rhoc, p

class AddMomentumSourceTerm(Equation):

def initialize(self, d_au, d_av, d_aw, d_idx):

d_au[d_idx] = 0.0

d_av[d_idx] = 0.0

d_aw[d_idx] = 0.0

def post_loop(self, d_au, d_av, d_aw, d_idx, d_x, d_y, d_z,

d_u, d_v, d_w, d_rho, d_rhoc, d_p, t, dt, d_c0):

x = d_x[d_idx]

y = d_y[d_idx]

z = d_z[d_idx]

c0 = d_c0[0]

rhoc0 = 1.0

rho0 = 1.0

u = ${formula[’u’]}

v = ${formula[’v’]}

w = ${formula[’w’]}

p = ${formula[’p’]}

rhoc = p/c0**2 + rhoc0

rho = d_rho[d_idx]

d_au[d_idx] += ${formula[’su’]}
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d_av[d_idx] += ${formula[’sv’]}

d_aw[d_idx] += ${formula[’sw’]}

A simple code to generate the python code from the YAML file and mako template is

given in listing 3.8.

Listing 3.8 : Python code to generate code from mako template file.

mytemplate = Template(filename=mako_file)

yaml_file = os.path.join(dirname, ’mms.yaml’)

data = yaml.load(fp, Loader=yaml.FullLoader)[’py’]

for key in data:

code = mytemplate.render(formula=data[key])

dirname = os.path.dirname(__file__)

outfile = os.path.join(dirname , key+’.py’)

fileptr = open(outfile, ’w’)

fileptr.writelines(code)

fileptr.close()

Therefore, using the above implementation, we only need to pass the manufactured solu-

tion using a python expression, and it automatically generates a PySPH Equation subclass

for the MS. In this process, the chances of human error are very low, and we can test the

convergence of our code with high confidence.

In the next section, we demonstrate the application of MMS to obtain the order of

convergence for the schemes discussed in the previous chapter.

3.3 Application of the MMS
In this section, we apply the MMS to obtain the order of convergence of various schemes.

We first determine the initial particle configuration viz. unperturbed, perturbed, or packed

required for the MMS. We then demonstrate that one can apply the MMS to arbitrarily-

shaped domains. We then compare the EDAC and PE-IPST-C schemes which di↵er in

the treatment of the density. We next apply the MMS to E-C and TV-C schemes as they

employ di↵erent governing equations compared to standard WCSPH in eq. (2.14). We

also demonstrate the application of the MMS method as a technique to identify mistakes

in the implementation. We then show the application of the MMS to obtain convergence

in the 3D domain and extreme resolutions.

In all our test cases, we use the quintic spline kernel with h�x = 1.2, where �x is the

initial inter-particle spacing. We consider a domain of size 1m ⇥ 1m. We simulate all the

test cases for 50⇥50, 100⇥100, 200⇥200, 250⇥250, 400⇥400, 500⇥500, and 1000⇥1000
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resolutions (unless stated otherwise) to obtain the order of convergence plots. In all our

simulations, we initialize the particle properties using the MS. We then solve eq. (3.4) and

set the properties on any solid particle using the MS before every timestep. We set a fixed

time step corresponding to the highest resolution for all the other resolutions as discussed

in section 2.4.1. We evaluate the L1 error using eq. (2.42) in the solution.

3.3.1 The e↵ect of initial particle configuration

The initial particle configuration plays a significant role in the error estimation since

the divergence of the velocity is captured accurately when the particles are uniformly

arranged (see section 2.2.1). In this test case, we consider three di↵erent initial configura-

tions of particles, widely used in SPH literature, viz. unperturbed, perturbed, and packed.

The unperturbed configuration is where we place the particles on a Cartesian grid such

that the particles are at a constant distance along the grid lines. In the perturbed configu-

ration, we perturb the particles initially placed on a Cartesian grid by adding a uniformly

distributed random displacement as a fraction of the inter-particle spacing �x. For the

packed configuration, we use the method proposed in Colagrossi et al. (2012) to resettle

the particles from a randomly perturbed distribution to a new configuration such that the

particle density  of the particles is nearly constant. In fig. 3.4, we show all the initial

particle distributions with the solid boundary particles in orange.

Figure 3.4 : The di↵erent initial particle arrangements in blue with the solid boundary

in orange.

We consider the MS of the form

u(x, y, t) =e�10t sin (2⇡x) cos (2⇡y),

v(x, y, t) = � e�10t sin (2⇡y) cos (2⇡x),

p(x, y, t) =e�10t (cos (4⇡x) + cos (4⇡y)) ,

⇢(x, y, t) =
p
c2

o
+ ⇢o,

(3.7)
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where, we set co = 20m/s for all our test cases. The MS complies with all the required

conditions discussed in section 3.2. We note that the MS chosen resembles the exact

solution of the Taylor-Green problem. However, since the code simulates the NS equation

using a weakly compressible formulation, we obtain additional source terms when we

substitute the MS to eq. (2.14) with ⌫ = 0.01m2/s. We obtain the source terms from the

symbolic framework, sympy as

su(x, y, t) =2⇡ue�10t cos (2⇡x) cos (2⇡y) � 2⇡ve�10t sin (2⇡x) sin (2⇡y)�
10e�10t sin (2⇡x) cos (2⇡y) + 0.08⇡2e�10t sin (2⇡x) cos (2⇡y)�
4⇡e�10t sin (4⇡x)

⇢
,

sv(x, y, t) =2⇡ue�10t sin (2⇡x) sin (2⇡y) � 2⇡ve�10t cos (2⇡x) cos (2⇡y)�
0.08⇡2e�10t sin (2⇡y) cos (2⇡x) + 10e�10t sin (2⇡y) cos (2⇡x)�
4⇡e�10t sin (4⇡y)

⇢
,

s⇢(x, y, t) = � 4⇡ue�10t sin (4⇡x)
c2

0
� 4⇡ve�10t sin (4⇡y)

c2
0

� 10 (cos (4⇡x) + cos (4⇡y)) e�10t

c2
0

.

(3.8)

We add su = suî + svĵ to the momentum equation and s⇢ to the continuity equation as

shown in eq. (3.4). We solve the modified WCSPH equations in eq. (3.4) using the L-

IPST-C method for 100 timesteps where we initialize the domain using the MS in eq. (3.7)

at t = 0. The values of the properties u, p, and ⇢ on the (orange) solid particles are set

using the MS in eq. (3.7) at the start of every time step.

In fig. 3.5, we plot the L1 error in pressure and velocity after 10 timesteps as a func-

tion of resolution for di↵erent initial particle distributions. Clearly, the di↵erence in initial

configuration a↵ects the error in pressure by a large amount. However, in velocity, the er-

ror is large in the case of the perturbed configuration only. The unperturbed configuration

has zero divergence error at t = 0 (see section 2.3.2). Whereas the perturbed configuration

has a high error due to the random initialization. Over the course of a few iterations, there

is no significant di↵erence between the distribution of particles for the unperturbed and

the packed configurations. Therefore, we simulate the problems for 100 timesteps for a

fair comparison.

In fig. 3.6, we plot the L1 error in pressure and velocity after 100 timesteps as a

function of resolution for the cases considered. Clearly, the di↵erence in error is reduced.

However, the order of convergence is not captured accurately. This is because the initial

divergence is not captured accurately by the packed and perturbed configurations as dis-



72 Verification techniques for WCSPH schemes

Figure 3.5 : The error in pressure (left) and velocity (right) with fluid particles initialized

using the MS in eq. (3.7) and the source term in eq. (3.8) after 10 timesteps

for di↵erent configurations.

Figure 3.6 : The error in pressure (left) and velocity (right) with fluid particles initialized

using the MS in eq. (3.7) and the source term in eq. (3.8) after 100 timesteps

for all the configurations.

cussed in section 2.3.2. This di↵erence can be avoided through the use of a non-solenoidal

velocity field. Therefore we consider the following modified MS, given by

u(x, y, t) =y2e�10t sin (2⇡x) cos (2⇡y),

v(x, y, t) = � e�10t sin (2⇡y) cos (2⇡x),

p(x, y, t) = (cos (4⇡x) + cos (4⇡y)) e�10t.

(3.9)
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Figure 3.7 : The error in pressure (left) and velocity (right) with fluid particles initialized

using the MS in eq. (3.9) and the corresponding source terms after 100

timesteps for all the configurations.

We note that the new MS velocity field is not divergence-free. We obtain the source

term with ⌫ = 0.01m2/s as done in eq. (3.8). We simulate the problem by initializing

the domain using MS in eq. (3.9). We also update the solid boundary properties using

this MS before every timestep. In fig. 3.7, we plot the L1 error for pressure and veloc-

ity as a function of resolution. Clearly, both the packed and unperturbed domains show

second-order convergence. Whereas the perturbed configuration fails to show second-

order convergence. Therefore, in the context of WCSPH schemes, one should not use a

divergence-free field in the MS. Furthermore, one should use either a packed or unper-

turbed configuration for the convergence study.

It is important to note that in stark contrast to the Taylor-Green vortex problem, the

method shows second-order convergence irrespective of the value of co. In the previous

chapter, a much higher co = 80m/s was necessary to demonstrate second-order conver-

gence. Furthermore, the convergence is independent of the initial configuration after 100

steps; therefore, we recommend simulating all the test cases for at least 100 timesteps to

obtain the actual order of convergence. It is important to note that some discretizations are

second-order accurate only when an unperturbed configuration is used (see section 2.2).

Therefore, to test the robustness of the discretization, we recommend using a packed con-

figuration.
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3.3.2 The selection of the domain shape

We now show the e↵ect of the shape of the domain on the convergence of a scheme.

We consider a square-shaped and a butterfly-shaped domain as shown in fig. 3.8. We

consider the MS with the non-solenoidal velocity field in eq. (3.9) as used in the previous

test case. The source terms obtained remain the same as before, where we consider ⌫ =

0.01m2/s. We solve the modified equations using the L-IPST-C scheme for 100 timesteps

for each domain. We initialize the fluid and solid particles using the MS in eq. (3.9). We

update the properties of the solid particles before every timestep using the same MS.

Figure 3.8 : The di↵erent domain shapes with solid particles in orange and fluid parti-

cles in blue.

Figure 3.9 : The L1 error in pressure (left) and velocity (right) with increase in resolution

for di↵erent shapes of the domain.
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In fig. 3.9, we show the L1 error after 100 timesteps in pressure and velocity as a

function of resolution for both domains considered. Clearly, both domains considered

show second-order convergence. Hence, one can consider any shape of the domain for

the convergence study of WCSPH schemes using MMS. However, we only use a square-

shaped domain for all our test cases.

3.3.3 Comparison of EDAC and PE-IPST-C

In this test case, we compare the convergence of EDAC (see appendix A.5.4) and

PE-IPST-C (see section 2.3.5) schemes. These two schemes have two major di↵erences.

First, the discretizations used in the PE-IPST-C method are all second-order accurate in

contrast to the EDAC scheme. Second, in PE-IPST-C, the density ⇢ is a transport property.

We evaluate ⇢ by inverting the linear equation of state given in eq. (2.32).

In the EDAC scheme, the initial configuration of particles a↵ects the results. There-

fore, we consider an unperturbed configuration, as shown in fig. 3.4. In order to reduce

the complexity, we consider an inviscid MS (⌫ = 0) given by

u(x, y) = sin (2⇡x) cos (2⇡y),

v(x, y) = � sin (2⇡y) cos (2⇡x),

p(x, y) = cos (4⇡x) + cos (4⇡y).

(3.10)

Thus, the code must maintain the pressure and velocity fields in the absence of the vis-

cosity. The source term for the EDAC scheme is given by

su(x, y) =2⇡u cos (2⇡x) cos (2⇡y) � 2⇡v sin (2⇡x) sin (2⇡y) � 4⇡ sin (4⇡x)
 

,

sv(x, y) =2⇡u sin (2⇡x) sin (2⇡y) � 2⇡v cos (2⇡x) cos (2⇡y) � 4⇡ sin (4⇡y)
 

,

sp(x, y) = � 1.25h
⇣
�16⇡2 cos (4⇡x) � 16⇡2 cos (4⇡y)

⌘
� 4⇡u sin (4⇡x) � 4⇡v sin (4⇡y).

(3.11)

We note that the source term employs density ⇢ =  which is the function of particle

position. In the case of the PE-IPST-C scheme, the source term is given by

su(x, y) =2⇡u cos (2⇡x) cos (2⇡y) � 2⇡v sin (2⇡x) sin (2⇡y) � 4⇡ sin (4⇡x)
⇢

,

sv(x, y) =2⇡u sin (2⇡x) sin (2⇡y) � 2⇡v cos (2⇡x) cos (2⇡y) � 4⇡ sin (4⇡y)
⇢

,

sp(x, y) = � 1.25h
⇣
�16⇡2 cos (4⇡x) � 16⇡2 cos (4⇡y)

⌘
� 4⇡u sin (4⇡x) � 4⇡v sin (4⇡y).

(3.12)
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We note that the source term sp in eq. (3.11) and eq. (3.12) are same. We simulate the

problem with the MS in eq. (3.10). The solid (shown in orange) boundary properties are

reset using this MS before every time step.

Figure 3.10 : The error in pressure (left) and velocity (right) with fluid particles initial-

ized using the MS in eq. (3.10), and the source term in eq. (3.11) for EDAC

and eq. (3.12) for PE-IPST-C after one timestep.

Figure 3.11 : The error in pressure (left) and velocity (right) with fluid particles initial-

ized using the MS in eq. (3.10), and the source term in eq. (3.11) for EDAC

and eq. (3.12) for PE-IPST-C after 100 timesteps.

In fig. 3.10, we plot the L1 error in pressure and velocity after one timestep for both

schemes. Clearly, the EDAC case diverges in the case of pressure, whereas we observe

a reduced order of convergence in velocity. In contrast, the PE-IPST-C scheme shows
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second-order convergence in velocity and higher in the case of pressure. We observe this

increased order only for the first iteration. In fig. 3.11, we plot the L1 error in pressure and

velocity after 100 timesteps for both schemes. In the case of the EDAC scheme, the order

of convergence in the velocity does not remain first-order, whereas the L-IPST-C scheme

shows second-order convergence in both pressure and velocity.

We note that we use an unperturbed mesh; therefore, we must obtain second-order

convergence up to the order of error due to numerical quadrature (see eq. (1.17)) for one

timestep in the case of the EDAC scheme as well. However, we observe a divergence in

pressure. This behavior occurs since ⇢ =  (a function of neighbor particle positions) is

present in the source term in eq. (3.11). However, the density in the source term expression

should be a fluid property as it is present in the governing di↵erential equation. Therefore,

as mentioned in the previous chapter, we should treat density in the governing equation

as a transport property as we do in the case of the PE-IPST-C scheme.

3.3.4 Comparison of E-C and TV-C

In this test case, we apply MMS to E-C and TV-C schemes introduced in sec-

tion 2.3.5. The governing equations for the E-C scheme are given in eq. (2.40) whereas

for TV-C in eq. (2.36). The expression for the source terms turns out to be the same for

both eq. (2.40) and eq. (2.36) governing equations given by

s⇢ =
@⇢

@t
+ ⇢r · u + u · r⇢,

su =
@u
@t
+
rp
⇢
� ⌫r2u + u · ru.

(3.13)

These source terms are the same as obtained in the case of the L-IPST-C scheme as well.

In the E-C scheme, we fix the grid and add the convective term as the correction, whereas

in the TV-C scheme, we add the shifting velocity in the LHS of the governing equations.

In order to show the convergence of the scheme, we consider the inviscid MS in

eq. (3.10) with the linear EOS. We do not consider the viscous term since the term intro-

duces similar errors in both schemes. We write the source term as

su(x, y) =2⇡u cos (2⇡x) cos (2⇡y) � 2⇡v sin (2⇡x) sin (2⇡y) � 4⇡ sin (4⇡x)
⇢

,

sv(x, y) =2⇡u sin (2⇡x) sin (2⇡y) � 2⇡v cos (2⇡x) cos (2⇡y) � 4⇡ sin (4⇡y)
⇢

,

s⇢(x, y) = � 4⇡u sin (4⇡x)
c2

0
� 4⇡v sin (4⇡y)

c2
0

,

(3.14)

where su = suî + suĵ is the source term for the momentum equation in both schemes.

We consider an unperturbed initial particle distribution and run the simulation for 100
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timesteps. The particles are initialized with the MS in eq. (3.10) and solid boundary are

reset using the MS before every time step.

Figure 3.12 : The error in pressure (left) and velocity (right) with fluid particles initial-

ized using the MS in eq. (3.10) and the source term in eq. (3.14) after 100

timesteps for the di↵erent schemes.

In fig. 3.12, we plot the L1 error in pressure and velocity as a function of resolution

for both schemes. Since we use second-order accurate discretization in both schemes,

they show second-order convergence in both pressure and velocity, as expected. Thus, we

see that the modified governing equations (eq. (2.36) and eq. (2.40)) must be considered

to obtain the source term for the schemes.

3.3.5 Identification of mistakes in the implementation

In this section, we demonstrate the use of the MMS as a technique to identify mis-

takes in the implementation. We use the L-IPST-C scheme and introduce either erroneous

or lower-order discretization for a specific term in the governing equations. We then use

the proposed MMS to identify the problem.

Wrong divergence estimation

We introduce an error in the discretized form of the continuity equation used in the L-

IPST-C scheme. We refer to this modified scheme as incorrect CE. We write the incorrect

discretization for the divergence of velocity as

hr · ui =
X

j

(u j+ui) · BirWi j! j, (3.15)
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where the error is shown in red. Since only the continuity equation is involved, we use

the inviscid MS given by

u(x, y) = (y � 1)2 sin (2⇡x) cos (2⇡y),

v(x, y) = � sin (2⇡y) cos (2⇡x),

p(x, y) = (y � 1) (cos (4⇡x) + cos (4⇡y)) .

(3.16)

The source terms can be determined by subjecting the above MS to eq. (2.14). We sim-

ulate the problem for one timestep with a packed domain (see fig. 3.4). In order to test

erroneous or lower-order discretization in the scheme, we recommend the simulation to

only one timestep with a packed initial particle distribution.

Figure 3.13 : The error in pressure (left) and velocity (right) with fluid particles initial-

ized using the MS in eq. (3.16) and the corresponding source term after 1

timestep for L-IPST-C and the scheme where the divergence is computed

using the incorrect eq. (3.15).

In fig. 3.13, we plot the L1 error in pressure and velocity as a function of the res-

olution for the L-IPST-C scheme and its variant incorrect CE with two time-integrators,

Euler and Runge-Kutta 2nd order (RK2). Clearly, the error in pressure increases by a sig-

nificant amount, and the order of convergence is zero for incorrect CE. However, the error

in pressure propagates to velocity in the case of the RK2 integrator, as it is a two-stage in-

tegrator. Therefore, we recommend that one must use single-stage integrators while using

MMS as a technique to identify mistakes. By looking at the incorrect CE-Euler plot in

fig. 3.13, we can immediately infer that there is an error in either the continuity equation

or the equation of state.
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Using a symmetric pressure gradient discretization

In this test case, we use a symmetric formulation as used by Monaghan (2005) and Sun

et al. (2017) for the pressure gradient term in the L-IPST-C scheme. We refer to this

method as sym. Since only the pressure gradient is involved, we use the same MS, as in

the previous case.

Figure 3.14 : The error in pressure (left) and velocity (right) with fluid particles initial-

ized using the MS in eq. (3.16) and the corresponding source term after

one timestep for L-IPST-C and the scheme where the pressure gradient is

computed using symmetric formulation.

In fig. 3.14, we plot the L1 error after one timestep in pressure and velocity as a

function of resolution for L-IPST-C and sym schemes. Clearly, the order of convergence

is a↵ected in the case of the velocity only. Therefore, it is evident that an inconsistent

pressure gradient discretization is used.

Using inconsistent discrete viscous operator

In this test case, we use the formulation proposed by Cleary et al. (1999) to approximate

the viscous term in the L-IPST-C scheme. We refer to this method as Cleary. Since

viscosity is involved, we use the MS involving viscous e↵ect given by eq. (3.9). While

testing the viscous term, we use a high value of ⌫ = .25m2/s such that the error due to

viscosity dominates the error in the momentum equation. We simulate the problem with a

packed configuration of particles for one timestep using the MS in eq. (3.9) and with the

corresponding source terms.
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Figure 3.15 : The error in pressure (left) and velocity (right) with fluid particles initial-

ized using the MS in eq. (3.9) and the corresponding source term after one

timestep for L-IPST-C and the scheme with the viscous term discretized

using formulation given by Cleary et al. (1999).

In fig. 3.15, we plot the L1 error in pressure and velocity as a function of resolution

for L-IPST-C and Cleary schemes. Since the viscous formulation by Cleary et al. (1999)

shows a negative rate of convergence with the increase in resolution in the perturbed

domain (see section 2.2.3), we observe divergence in the velocity. Therefore, we infer

that there is an error in the discretization of the viscous term.

3.3.6 Convergence at extreme resolutions

Thus far, we have used particle resolutions in the range 10�3  �x  2 ⇥ 10�2. We

wish to study the convergence of the scheme when much higher resolutions are consid-

ered. We consider a domain of size 1⇥ 1 with uniformly distributed particles as shown in

fig. 3.16. In order to reduce computation, we reduce the size of the domain by half if the

number of particles crosses 1M. In the fig. 3.16, the red box shows the domain considered

for the computation with one million particles with �x = 1.25 ⇥ 10�4. In order to obtain

an unbiased error estimate, we consider the same MS and the domain shown by the black

box in fig. 3.16 to evaluate

L1 = max{| fi(x, y, z) � fo(x, y, z)|8i 2 N}, (3.17)

where f is the property of interest and fo is the value of the property evaluated using the

MS.
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Figure 3.16 : The domain filled by blue fluid particles. The red box shows the smallest

domain considered for the highest resolution of 8000⇥8000 and the black

box shows the area which is considered to evaluate error for all the reso-

lutions.

We first consider the MS given in eq. (3.9). We obtain the source term and solve

eq. (3.4) using the L-IPST-C scheme for all the resolutions with ⌫ = .01m2/s. We also

consider the case where we do not correct the kernel gradient in the discretization of

eq. (3.4) in the L-IPST-C scheme.

In fig. 3.17, we plot the L1 error in pressure and velocity solved using L-IPST-C

scheme with kernel gradient corrected, after 100 timesteps as a function of resolution for

h�x = 1.2 and h�x = 1.4. Clearly, we obtain second-order convergence. In fig. 3.18, we

plot the error for the case where we do not employ kernel gradient correction. Clearly, the

discretization error dominates.

We also consider the MS containing a range of frequencies given by

u(x, y, t) =y2e�10t
10X

j=1

sin (2 j⇡x) cos (2 j⇡y),

v(x, y, t) = � e�10t
10X

j=1

sin (2 j⇡y) cos (2 j⇡x),

p(x, y, t) =e�10t
10X

j=1

cos (4 j⇡x) + cos (4 j⇡y).

(3.18)

We obtain the sources terms and simulate eq. (2.14) using the L-IPST-C scheme for the

above MS. As before, we also consider the case where we do not employ kernel gradient

correction.
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Figure 3.17 : The error in pressure (left) and velocity (right) as a function of resolution

for two di↵erent h�x values with the MS in eq. (3.9). All cases are solved

using the L-IPST-C scheme with kernel gradient correction.

Figure 3.18 : The error in pressure (left) and velocity (right) as a function of resolution

for two di↵erent h�x values with the MS in eq. (3.9). All cases are solved

using the L-IPST-C scheme with no kernel gradient correction.
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Figure 3.19 : The error in pressure (left) and velocity (right) as a function of resolution

for two di↵erent h�x values with the MS in eq. (3.18). All cases are solved

using the L-IPST-C scheme with kernel gradient correction.

Figure 3.20 : The error in pressure (left) and velocity (right) as a function of resolution

for two di↵erent h�x values with the MS in eq. (3.18). All cases are solved

using the L-IPST-C scheme with no kernel gradient correction.
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In fig. 3.19, we plot the error in pressure and velocity solved using L-IPST-C scheme

with kernel gradient correction for 100 timesteps as a function of resolution. Clearly,

both cases show second-order convergence. In fig. 3.20, we plot the error in pressure

and velocity for the solution obtained using the L-IPST-C scheme with no kernel gradient

correction. As can be seen, kernel correction is essential in order to obtain second-order

convergence at high resolutions.

We have therefore shown that we can consider very high resolutions using the MMS

technique. This enables us to find flaws in the scheme, which may not converge at a

very high resolution. These are hard to test using traditional methods where a fluid flow

problem is solved.

3.3.7 Verification in 3D

We now use the MMS to verify the code with a three-dimensional domain. Since the

number of particles in three dimensions increase much faster than in two dimensions with

the increase in resolution, we can reduce the domain size with resolution as done while

dealing with extreme resolutions. We consider a unit cube domain size with 1 million

particles. As we increase the resolution, we decrease the size of the domain such that the

number of particles in the domain remain at 1 million. We consider the MS given by

u(x, y, z, t) =y2e�10t sin (⇡ (2x + 2z)) cos (⇡ (2x + 2y)),

v(x, y, z, t) = � e�10t sin (⇡ (2y + 2z)) cos (⇡ (2x + 2y)),

w(x, y, z, t) = � e�10t sin (⇡ (2x + 2z)) cos (⇡ (2y + 2z)),

p(x, y, z, t) = (cos (⇡ (4x + 4y)) + cos (⇡ (4x + 4z))) e�10t.

(3.19)

We obtain the source term by subjecting the MS in eq. (3.19) to the governing equation

in eq. (2.14) with ⌫ = 0.01m2/s. We simulate the problem for 10 timesteps.

In fig. 3.21, we plot the L1 error in pressure and velocity as a function of resolution

for the L-IPST-C scheme with and without kernel gradient correction. As expected, the

case with no kernel gradient correction gradually flattened due dominance of discretiza-

tion error. The case with kernel gradient correction shows second-order convergence in

both pressure and velocity. Thus we see that we can easily test the SPH method in a

three-dimensional domain using the MMS.

3.4 Summary
In this chapter, we have used the MMS to verify the convergence of di↵erent WCSPH

schemes. Thus far, most of the numerical studies of the accuracy and convergence of the
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Figure 3.21 : The L1 error in pressure (left) and velocity (right) after 10 timesteps as

a function of resolution solved using L-IPST-C scheme with and without

kernel gradient correction. The source term is calculated using the MS in

eq. (3.19).

WCSPH method have used either an exact solution like the Taylor-Green vortex problem

or an established solver or experimental result. These methods are therefore limited in

their ability to detect specific problems in an SPH implementation. This is true even

in work discussed in the previous chapter, where a Taylor-Green vortex, Gresho-Chan

vortex, and incompressible shear layer problems are used. These are complex problems,

and obtaining a solution to these involves significant computation. Moreover, if the results

do not produce the expected accuracy or convergence, the researcher does not obtain much

insight into the origin of the problem. Furthermore, the conventional approaches do not

o↵er any means to study the accuracy of boundary condition implementations.

In this context, the proposed approach o↵ers a multitude of advantages listed and

discussed below:

• The method is highly e�cient in terms of execution time. We are able to detect

problems in the implementations of specific discretization operators in less than

100 iterations. Even for our most challenging cases with a million particles, the

typical run time for a single computation on a multi-core CPU does not exceed a

few minutes. On the other hand, the comparison study for the lid-driven cavity case

in section 3.1 took 150 minutes for just the 200 ⇥ 200 resolution.
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• The method easily works in three dimensions, and we demonstrate its applicability

for a simple three-dimensional case. This is significant because traditional SPH

verification methods only use two-dimensional problems.

• The method allows us to identify particular problems with a code. Through a ju-

dicious choice of MS and time integrator, we can identify if the implementation

of a specific term in the governing equation is the source of a problem. We have

demonstrated this with several examples in the preceding sections.

• We are able to verify the order of convergence e�ciently even for very high resolu-

tions and thereby test if the scheme is truly second-order convergent as the resolu-

tion increases. In the present work, we have demonstrated this for extremely high

resolutions (corresponding to 8000 ⇥ 8000 particles in a 1m ⇥ 1m domain) without

needing to simulate the problem for a long duration and also limiting the number of

computational particles to a smaller number.

• The method will work on any manufactured solution, and this allows us to test the

scheme with functions involving a large range of frequencies. In contrast, many

exact solutions involve simple functional forms. Therefore by using the MMS, the

code can be tested with a more challenging class of problems.

As a result of these significant advantages, the proposed method o↵ers a robust, e�-

cient, and powerful method to verify the accuracy and convergence of SPH schemes. We

can also e↵ectively test the boundary condition implementations using the MMS. How-

ever, in order to e↵ectively test boundary condition implementations, it is important to

capture features of the solid bodies accurately. In the next chapter, we discuss various

methods to create initial particle distribution that accurately represents the object of inter-

est.





Chapter 4

Construction of solid bodies in SPH

In the SPH method, solid, inlet, and outlet are usually represented by a few layers of

dummy particles to implement boundary conditions. The fluid properties of these dummy

particles, viz. velocity, pressure, and density, are extrapolated using di↵erent methods.

However, to accurately implement the boundary conditions, one needs to capture the

boundary surface adequately. The arrangement of particles in and around a solid body

of interest is termed as particle packing. In this chapter, we discuss various existing par-

ticle packing techniques and their drawbacks, followed by a novel hybrid algorithm. Two

widely used methods by Colagrossi et al. (2012) and Jiang et al. (2015) focus on the par-

ticles in either the fluid or solid domain only. Therefore, we propose a hybrid algorithm

to pack the fluid and solid particles around the interface such that the geometric features

are captured and the particles are uniformly distributed. We use the proposed algorithm to

generate test cases for solid boundary condition implementation verification. In the next

section, we discuss various packing algorithms in detail.

4.1 Particle packing algorithms
In a simulation with a solid body, for example, the flow past a circular cylinder in two

dimensions, the solid particles are represented using dummy particles. The use of the

particles arranged on a rectangular lattice would be an easy choice. However, the resulting

boundary will be jagged. Furthermore, the accurate approximation of function and its

derivatives requires uniform distribution of particles. Colagrossi et al. (2012) proposed a

measure of uniformity of particle distribution. A distribution is said to be uniform such

that the condition

 i =
X

mjWi j = C1, (4.1)

89
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and

r i =
X

mjrWi j = C2, (4.2)

are satisfied. For unit mass, C1 ⇡ 1 and C2 ⇡ 0. In order to produce body-conforming

initial particle distribution, various particle packing algorithms are discussed in detail in

the following sections.

4.1.1 Standard packing

In this method, we construct the interior of a 2D object using the method proposed

by Marrone et al. (2011). We represent the object boundary by a piecewise linear curve

(PLC) with normals to the boundary pointing out of the solid. We generate the first layer

of the interior by moving the PLC points into the body along the normal by �x/2 where

�x is the particle spacing. We discretize the new PLC into particles such that each particle

is approximately �x distance apart along the PLC. We move the newly added PLC further

into the body along the normal by �x and discretize again. We repeat this procedure until

we generate the desired number of layers of solid particles. We note that this works only

for 2D objects.

Once we create the dummy layers representing the solid body, we place fluid parti-

cles around the solid particles. We use the method proposed by Colagrossi et al. (2012) to

pack particles around the fixed solid particles. In order to initialize the particle position,

we consider a grid of evenly distributed particles and retain only the particles outside (de-

fined by the direction of normal) the boundary surface represented by the PLC. A force

due to number density gradient similar to eq. (4.2) packs the particles. We note that since

we use only the number density gradient as a repulsion force amongst the particles, they

are prone to clumping (Morris, 1995; Swegle et al., 1995). We subject the particles to a

damping force to dissipate the energy of the system. Hence the force on any particle is

governed by
du
dt
= �rpb

 
+ ⇣u. (4.3)

The value of pb and ⇣ is set directly (see section 4.1.3). We discretize the equation as

dui

dt
= pb

X

j

!i! j

m j
rWi j � ⇣ui. (4.4)

The convergence criteria will be discussed in section 4.1.3.

In algorithm 1, we describe the Standard packing in detail. The ReadInput func-

tion reads the points describing the geometry. We initialize all the particles, and the

dummy particles are created using the method proposed by Marrone et al. (2011) in

CreateParticles. The SetConstantAndTimeStep function sets the constants and time
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Algorithm 1: Standard particle packing algorithm.
Result: Coordinates of solids and fluids

ReadInput();

CreateParticles();

SetConstantAndTimeStep();

converged = False;

iteration = 0;

while not converged do
UpdateNeighbors();

ComputeAccelerations();

IntegrateParticles();

converged = CheckConvergence();

iteration++;

end

step (see section 4.1.3). The iteration starts with the creation of neighbor lists for every

particle in UpdateNeighbors. Then, we compute accelerations in ComputeAccelerations

using eq. (4.3) and integrate in IntegrateParticles using eq. (4.17). The iteration con-

tinues until we satisfy the criteria (see section 4.1.3) in CheckConvergence.

4.1.2 Coupled packing

Jiang et al. (2015) proposed a packing algorithm for solid objects both in 2D and

3D in order to sample blue noise. We describe the steps involved in algorithm 2. We use

a repulsion force which is similar to the one used in Colagrossi et al. (2012) along with

damping. However, in this case, we use a symmetric form to discretize the background

pressure force, given by

ab,i = �mi pb

X

j

m j

0
BBBBB@

1
 2

i
+

1
 2

j

1
CCCCCAriWi j, (4.5)

where Wi j is the cubic spline kernel function. We compute this in ComputeAccelerations

along with an additional force discussed later. In the present implementation, a constant

background pressure pb is used. In the original method, the background pressure is a

function of particle density. On computing the acceleration, we integrate all the particles

in IntegrateParticles.

Since the particles near the surface lack supporting particles, a large force acts upon

them. In order to keep the particles inside a confined region, we convert the particles
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nearer than 0.05�x to boundary particles. The motion of these particles on the boundary

is discussed in the next section. As done in the original method, we project the boundary

particles back to the surface in every iteration in ProjectParticles.

Algorithm 2: Packing algorithm by Jiang et al. (2015).
Input: particles, max_iter
Result: Packed particles

iteration = 0;

while not converged and iteration < max_iter do
UpdateNeighbors(particles);

ComputeAccelerations();

IntegrateParticles();

ProjectParticles();

iteration++;

end

If one were to only use eq. (4.5), it would result in more particles pushed towards

the boundary. In order to counteract the force on the particles near the boundary, Jiang

et al. (2015) used a cohesion force proposed by Akinci et al. (2013). The acceleration due

to this force in SPH form is given by

ac,i = �mi�
X

j

m j i jCi jn̂i j, (4.6)

where  i j = 2 o/( i + j), n̂i j = xi j/ri j and Ci j is the spline kernel in Akinci et al. (2013),

given by

C(q) =
32
⇡hd

8>>>>>><
>>>>>>:

(1 � q)3q3 0.5 < q < 1,

2(1 � q)3q3 � 1
64 0 < q < 0.5,

0 otherwise.

(4.7)

Jiang et al. (2015) have not specified a way to choose the value of the constants in

eq. (4.5) and eq. (4.6). We heuristically choose the values of � = 20, pb = 10 and h = �x

for all the simulations.

We note that there is no exterior defined in the original method of Jiang et al. (2015).

In this work, we pack the exterior in the same manner as the interior by moving the bound-

ary surface along the surface normal by �x/2 and ��x/2 for the exterior and interior,

respectively. In fig. 4.1, we enclose the interior domain (domain 1) within a thick dashed

line, and the exterior is within a thin dashed line (domain 2). We represent each domain

with a di↵erent pattern. Domain 2, having an external boundary, has frozen particles

outside it. The solid line represents the boundary surface.
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Domain 1

Domain 2

Interface
Domain 2

boundary

Domain 1

boundary

External

boundary

Figure 4.1 : Schematic for the Coupled packing algorithm. The external region is

marked as domain 2, and the internal region is marked as domain 1.

Algorithm 3: Coupled particle packing algorithm.
Result: Coordinates of solids and fluids

ReadInput();

DivideDomain();

CreateParticles();

SetConstantAndTimeStep();

Algorithm2(domain1, 5000);

Algorithm2(domain2, 5000);

iteration = 0;

converged = False;

while not converged do
UpdateNeighbors(domain1 + domain2);

ComputeAccelerations();

IntegrateParticles();

converged = CheckConvergence();

iteration++;

end
SeparateParticles();

We pack the particles in two di↵erent passes as described in algorithm 3.

First, we read the geometry data in ReadInput followed by particle initialization in

CreateParticles. We divide the free particles into domain 1 and domain 2 depend-

ing upon their location in DivideDomain. We do the following for particles that are lying

in between the two dashed boundaries of domains 1 and 2. If a particle is in the exterior

region (outside the boundary surface), we move it along the normal by a distance �x into
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domain 2. Similarly, we move particles between the boundary surface and the domain 1

boundary into domain 1.

In the first pass, we solve domains 1 and 2 separately using the algorithm 2. In this

case, each domain is unaware of the other. We perform the boundary particle projec-

tion onto the open surface of the respective boundaries. We move the particles in both

domains for a predetermined number of iterations, at which point the particles reach equi-

librium1. This step ensures that we sort all particles as either interior or exterior and have

an interface that they cannot cross, i.e. the dashed lines.

In the second pass, when the projection is complete, we constrain the particles on the

interior surface, i.e. the thick dashed line, to move along it. We allow all other particles

to freely move using eq. (4.5) in ComputeAccelerations and IntegrateParticles. The

iteration continues until the convergence criteria in CheckConvergence as discussed in

section 4.1.3 is satisfied. The presence of exterior particles eliminates the need for the

cohesion force; thus, we do not evaluate it once domains 1 and 2 start interacting. Using

this approach, we obtain a uniform distribution both inside and outside the surface. We

note that the original implementation was used to sample blue noise and does not require

external particles.

In both algorithms discussed above, only one of the fluid or solid particles were

packed at a time. In the next section, we propose a new hybrid algorithm, where we

simultaneously pack solid and fluid particles around an arbitrarily-shaped body.

4.1.3 Hybrid packing

The schematic shown in fig. 4.2 depicts the di↵erent kinds of particles used in the

proposed algorithm. In the figure, we consider the two-dimensional case of a circular

cylinder surrounded by fluid. The dashed black line represents the surface of the cylinder

(boundary surface), which we wish to capture accurately. We assume that this surface is

discretized into a set of points called “boundary nodes”. The di↵erent kinds of entities

shown in the figure are,

• Free particles: These are particles arranged initially in a rectangular or hexagonal-

packed pattern. Their motion is not constrained. These are depicted as blue circles.

• Frozen particles: These are a set of fixed dummy particles that surround the free

particles in order to provide support to the kernel. These are depicted as green

circles.
1We choose the predetermined iterations to be 5000 based on the test cases considered.
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• Boundary particles: These particles are constrained to move along the “boundary

surface” and are depicted as red circles.

• Boundary surface: The surface of the geometry that is discretized. It is represented

by a set of fixed points called “boundary nodes” which do not influence any other

particles.

• Boundary node: These are points that discretize the boundary surface; they also

store the local surface normals of the boundary surface. These are depicted as black

dashes. We note that these are called nodes because they do not exert any forces on

particles and only serve to provide information on the position and orientation of

the boundary surface.

During the execution of the algorithm, free particles (blue) may be converted to boundary

particles (red) if they are close to the boundary surface. Once the proposed algorithm

completes, the red boundary particles must conform to the boundary represented by the

dashed black line. The blue particles inside the dashed boundary will be considered solid

(dummy) particles, and those outside as fluid particles.

Boundary surface

Boundary node

Boundary particle

Free particle

Frozen particle

Figure 4.2 : Schematic of the initial distribution of particles and the di↵erent kinds of

particles.

In fig. 4.3, we show the overall flow of the algorithm. The algorithm requires two

inputs viz. the geometry information and the desired particle spacing. Given the geometry

surface, we first estimate the number of particles Ns that should lie on this surface using

the desired spacing of particles and the length of the surface in 2D (the surface area in

3D).
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Initial

projection

Initialize particles

Initialize boundary

nodes

Geometry specification

Compute acceleration

Move particles

Project free particles

on boundary surface

Any particles

projected?
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No

Yes
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to simulation

Figure 4.3 : Flowchart of the particle packing algorithm. The box outlined in dashed

red lines is the initial projection phase.

Initially, we create the frozen particles on the periphery of the domain placed on a

rectangular lattice as shown in fig. 4.2. Then, we place the free particles inside the domain

on a regular lattice. At this stage, we do not identify the boundary particles. We initialize

the boundary nodes using the information provided by the user.

We compute the acceleration on the free and boundary particles (we identify these

later) using a local density gradient and a repulsive force. The last step corresponds to

the green block in fig. 4.3. We move the particles using the computed accelerations. As

the free particles move, we convert them to boundary particles if they are close enough to

the boundary surface. We project them to the nearest point on the boundary surface. The

boundary particles only move along the boundary surface. We convert the free particles

iteratively to boundary particles until no free particle is su�ciently close to the boundary.

During the initial projection phase (denoted by the red dashed line in the fig. 4.3),

we project the particles regularly onto the boundary surface. We repeat the last step until

the number of boundary particles has reached Ns and remains there for a few consecutive

iterations. The algorithm then proceeds to settle the particles into a uniform distribution
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until the displacement of the particles is less than a user-defined tolerance. We denote

this step as the “Converged” block in fig. 4.3. Once we attain convergence, we obtain the

boundary and free particles packed inside and outside the surface as desired. Since the

boundary surface is known, we can quickly identify the free particles as solid and fluid

particles.

We can place this packed collection of free and boundary particles into a larger reg-

ular mesh of particles for a simulation. For example, In fig. 4.4 the dashed region shows

where we can place the packed particles. We use a regular mesh of the same spacing

to represent the exterior of this region (shown in green). This approach is convenient to

use in the context of fluid flow past solid bodies as done for internal flows (Negi et al.,

2021a), and free surface flows (Tafuni et al., 2018). We note that the particle packing

makes the particle unstructured, whereas, in the case of a mesh-based solver, a structured

arrangement of cells is preferred near a solid wall. However, in the SPH-based solver,

the disorder in the particle distribution over time is inevitable (unless a Eulerian method

is employed). Therefore, in the proposed method, we lose the structured nature of the

initial particle distribution and choose unstructured initial particle distribution that accu-

rately captures the solid boundary features. In the subsequent sections, we explain the

algorithm described above in detail.

Inlet Outlet

Figure 4.4 : The pre-processed patch (within dashed lines) of particles placed in the ap-

propriate location of a typical simulation. The blue particles denote the free

particles identified as fluid particles, and the red represents the solid par-

ticles identified by the packing process. The green particles are generated

from a fixed mesh of points.
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Initialization of boundary nodes

We first initialize the boundary nodes, which represent the boundary surface. In a two-

dimensional domain, we require a set of points that discretize the boundary curve. We

parametrize the boundary curve by �, and specify the points on the curve as x = C(�) and

� 2 [0, 1]. We discretize this curve such that xi = C(�i). We keep the spacing between

points such that |xi+1 � xi| < �x. We initialize the boundary node coordinates using these

points. We calculate the outward normals n̂x,i, n̂y,i for any node i using

n̂x,i = 0.5
 
yi+1 � yi

ri+1 i
+
yi � yi�1

ri i�1

!
,

n̂y,i = �0.5
 

xi+1 � xi

ri+1 i
+

xi � xi�1

ri i�1

!
,

(4.8)

where ri j is the length of the segment joining the node at (xi, yi) with the node at (x j, y j).

We normalize the resulting normal. Equation (4.8) ensures that sharp corners of the curve

have smooth normals. For a three-dimensional case, a triangulation of the surface with

outward normals are necessary. One can generate the triangulation using any mesh gen-

eration tool (Bern et al., 1992). We use the centroid of each triangle and its normal to

initialize the boundary nodes.

In SPH, the actual boundary surface is exactly in between the solid and fluid par-

ticles. Thus, both in two and three dimensions, given a particle spacing of �x, we shift

the boundary nodes by �x/2 inside the actual boundary to correctly implement the solid

boundary conditions as discussed in Marrone et al. (2011). In order to move the nodes

inwards, we perform the following translation on each boundary node given by

x = x � �x
2

n̂, (4.9)

where, x is the position of the node and n̂ is its unit normal pointing outwards. We must

note that this is optional, and one can provide a pre-shifted surface and avoid the shifting

with eq. (4.9).

One must take care when there are sharp changes in the features of the geometry.

Consider an airfoil trailing edge in fig. 4.5 shown as a black line. We mark the sharp

corners as “corner nodes”, and in this case, it is the ith node. When we shift the nodes

on this surface, the boundary surface tends to self-intersect itself. This is shown by the

red nodes connected using a black dashed line. In order to remove the intersection of the

boundary surface near the corner node, we replace the points i � 3 to i � 1 with the points

on the line joining i�4 and i with equal spacing shown by black points. Similarly, we also

replace the points i + 1 to i + 3 with points lying along the line joining points i and i + 4.

This results in a non-intersecting surface, as shown by the red dashed line on the right
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Figure 4.5 : Shifting of the boundary near a sharp-edged boundary. The boundary nodes

are depicted in red with normals. On the left is the boundary surface after

the initial shifting shown as black dashed lines. On the right is the final

geometry after the removal of the intersecting edges, which are shown as

dashed red lines. The annular blue free particle is the candidate to be placed

on the corner and held fixed.

side of fig. 4.5. Once we resolve the intersection, we place the nearest free particle near

the corner node (annular blue particle) on it and convert it to a fixed boundary particle.

The position of these fixed boundary particles does not change in the entire simulation.

In the case of a three-dimensional object, one has to make sure that the surface does

not intersect after applying eq. (4.9) or use a pre-shifted surface as an input.

Dynamics of the particles

In this section, we discuss the dynamics of particle regularization. We apply two forces

to the particles, and together these regularize the particle distribution. The two forces are

a gradient due to particle disorder and a pure inter-particle repulsive force.

In the presence of a constant pressure field pb and no viscous e↵ect, the momentum

equation is given by
du
dt
= �r(1 · pb)

 
= � pbr(1) + r(pb)

 
. (4.10)

When the term, pbr(1), on the right hand side is discretized using the SPH method, we

obtain pbr (see eq. (4.2)) for unit mass. This is non-zero when the particles are not

uniform and hence particles exert a force on each other in order to reach an equilibrium

position. Using the SPH approximation, we discretize the above equation as

ab,i =
dui

dt
= �pb

X

j

!i! j

mi
rWi j. (4.11)

Since all SPH kernels satisfy eq. (4.1), any suitable SPH kernel discussed in section 2.1

can be employed. In this work, we use the quintic spline kernel.
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Figure 4.6 : Force due to LJ potential and the gradient of eq. (4.12) as a function of

distance, r and ↵ = 1.

In this algorithm, the value of pb is set to 1 independent of the resolution. In addition

to this force, we use a repulsive force (RF) similar to the gradient of the Lennard Jones

potential (LJP). The new repulsion force potential (�RF) is given by

�RF = 12 kr

 
⌧2

r3 �
⌧

r2

!
, (4.12)

where kr is a constant. We set ⌧ = 2�x/3, where  is a scaling factor. The gradient of

eq. (4.12) gives us the force due to �RF . We keep the force constant for r < �x/2 in order

to avoid very large repulsion forces. We write the SPH approximation of the acceleration

due to eq. (4.12) as

aRF,i = �r�RF,i =

8>>>>>>><
>>>>>>>:

P
j 192 krei j

⇣
3⌧2

�x4 � ⌧
�x3

⌘
ri j  �x/2,

P
j 12 krei j

✓
3⌧2

r4
i j
� 2⌧

r3
i j

◆
�x/2 < ri j  ↵�x,

0 ri j > ↵�x,

(4.13)

where ei j = xi j/ri j. Note that the acceleration is continuous at ri j = �x/2. We find that

using a value of  = 0.95 works well for the algorithm.

It is clear from eq. (4.13) that this force is active only when particles come closer

than the desired particle spacing. This force prevents particle pairing, which may happen

due to the use of some kernels like cubic spline for large time steps (Dehnen et al., 2012).

In fig. 4.6, we show the comparison between the force due to LJP and RF. The LJP repul-

sion force increases rapidly compared to our suggested repulsion force. Thus, This force

allows us to use a larger time step during integration. Moreover, unlike the force due to

LJP, the new force does not introduce inter-particle attraction.
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As discussed in Colagrossi et al. (2012), for stability, we use a damping force to

reduce the energy of the system. We compute the acceleration due to damping for the ith

particle by

ad,i = �⇣ui, (4.14)

where ⇣ is the damping constant and ui is the velocity of the ith particle. We discuss

the value of the damping constant ⇣ in section 4.1.3. Thus, the equation governing the

dynamics of the system is

du
dt
= �rpb

 
� r�RF � ⇣u. (4.15)

We convert the above equation into SPH form using eqs. (4.11), (4.13) and (4.14); thus

acceleration of the ith particle

ai = ab,i + aRF,i + ad,i. (4.16)

We must note that the combination of background pressure and repulsion forces produces

repulsion only when particles are disordered. One can also accomplish this by various

other particle shifting techniques (PST) first proposed by Xu et al. (2009).

On using eq. (4.15), we calculate the velocities and new positions using a semi-

implicit Euler integration given by

ui(t + �t) = ui(t) + �tai(t),

xi(t + �t) = xi(t) + �t ui(t + �t).
(4.17)

In the case of boundary particles, we correct the velocities to constrain them to move along

the surface (discussed later). We should note that the packing algorithm only ensures that

particle distributions are regular, and therefore using a higher-order integrator would not

promise better results.

We study the stability of the method in a two and three-dimensional domain for

finite perturbation under the action of forces described above. We consider a domain of

size 1m ⇥ 1m unit along each coordinate direction. We place particles with a spacing of

�x = 0.05. We also place fixed particles outside this unit box suitably. The criteria to set

the value of pb, ⇣, kr and �t are discussed later. We perturb a single particle close to the

center by �x/2 in each direction. We move the particles using eq. (4.15) and eq. (4.17) for

15000 iterations. We consider the stability of the following initial distribution of particles:

• rectangular packing shown in fig. 4.7a with ND gradient.

• rectangular packing shown in fig. 4.7a with ND + RF.
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(a) Rectangular (b) Hexagonal

Figure 4.7 : Di↵erent packing structures in 2D.

• hexagonal packing shown in fig. 4.7b with number density (ND) gradient.

• hexagonal packing shown in fig. 4.7b with ND + repulsion force (RF).

We evaluate the error in every iteration using

L1( �  o) = max({| i �  o|,8i 2 [1,N]}), (4.18)

where N is the number of particles in the domain. In fig. 4.8a and fig. 4.8b, we plot the

L1( � o) with number of iterations for 2D and 3D domain respectively with  o = 1.0. In

2D, all the combinations perform well. In the case of the 3D domain, rectangular lattices

settle into an equilibrium configuration with a much larger density di↵erence. Therefore

the rectangular lattice in 3D is an unstable equilibrium. In contrast, the hexagonal packing

in 3D is in a stable equilibrium.

We can understand the behavior in 3D from the total potential energy of the particles.

We can see that eq. (4.1) for  i is the potential energy of the ith particle and hence
P

i  i is

the total potential energy of the system. The acceleration of a particle given in eq. (4.10)

is the negative of the gradient of its potential energy. We have numerically found that

a small perturbation of a particle at a given site reduces the total potential energy in the

rectangular lattice case, whereas the same perturbation results in higher potential energy

in the case of the hexagonal packing. It suggests that the hexagonal packing is stable in

3D, unlike the rectangular lattice. A careful analysis of the stability is outside the scope

of the present work. Due to the stability of hexagonal packing shown in fig. 4.7b, we use

it in all our test cases.

Projecting free particles to the surface

Initially, the boundary particles are unlikely to conform to the boundary surface. At t =

0, we assign no particles as boundary particles. We convert free particles to boundary
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(a) 2D (b) 3D

Figure 4.8 : Particle density convergence with a particle at center perturbed by �x/4.

particles after every 50 iteration. We refer to this as the “projection frequency”. The

projection frequency is a user-defined parameter. Increasing this does not guarantee better

results; however, we do not recommend a very small value. On running the proposed

algorithm with spacing �x = 0.1 around a unit radius 2D cylinder with varying projection

frequency as shown in fig. 4.9, we found that after projection frequency 20, the number

density gradient does not change by a large value. Thus, we choose the value of 50

heuristically.

If we consider a flat surface, an estimate for the number of particles that can fill the

surface is, Ns = As/�x(n�1) where As is the area of the surface and n is the dimension of

the space in which the surface is embedded. In order to perform projection, we employ

two di↵erent criteria depending on whether the initial projection in fig. 4.3 is complete or

not, as shown in algorithm 4.

In the algorithm, the function FindParticlesNearBoundary finds all the free parti-

cles that are less than a prescribed distance, maxdist, to a boundary node. We compute

the distance as follows, given a free particle p, we find the boundary node b that is closest

and compute the distance rpb · n̂b, where rpb = rp � rb and n̂b is the normal at b. We note

that the algorithm to find the nearest boundary node uses the existing neighbors generated

when computing the accelerations discussed in section 4.1.3.

The empty_count variable stores the number of consecutive passes for which the

p_list was empty. We convert the free particles having a distance to the boundary node

less than 0.5�x to boundary particles in ConvertParticles and project them to the bound-
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Figure 4.9 : Error in r i for a domain with unit radius cylinder with di↵erent projection

frequencies.

ary surface in ProjectToBoundary. However, if the empty_count exceeds 3, we increase

the distance threshold to 0.65�x. We increase the threshold to handle the corner cases

where free particles are just outside 0.5�x distance2. This iterative conversion of free

particles to boundary particles is necessary in order to capture the surface accurately.

Kinematics of boundary particles

As discussed earlier, we constrain the movement of the boundary particles along the

boundary surface. Figure 4.10 illustrates the motion of the boundary particles (in red)

along nodes 1, 2, 3, 4, and 5, representing the geometry. We note that even though

the particle is a boundary particle, it is only projected onto the surface every proj_freq

timesteps as discussed in section 4.1.3; hence the boundary particle may not exactly lie

on the boundary as it moves.

We perform the motion of the boundary particle as follows. We first identify the

boundary node nearest to the boundary particles in the direction of the particle’s velocity.

Consider a boundary particle p, and a boundary node j, near p having position xp and x j

respectively. We determine the index of the nearest node J by

J = arg min
j
{rp j | j 2 N and xp j · up < 0}, (4.19)

2We find this value based on numerical experiments. Too small a value like 0.55�x produces poor results

in coarse resolutions, and too large a value (0.75�x) produces poor distributions with finer resolutions.
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Algorithm 4: Pseudo-code for free particle projection.
Input: proj_freq, ds=�x

Result: List of free particles to be projected

iteration = 0;

empty_count = 0;

while not converged do
. . . ;

if iteration % proj_freq == 0 then
if empty_count < 4 then
p_list = FindParticlesNearBoundary(maxdist=0.5*ds);

if len(p_list) > 0 then
ConvertParticles();

empty_count = 0;

else
empty_count++;

end
else
p_list = FindParticlesNearBoundary(maxdist=0.65*ds);

ConvertParticles();

end
ProjectToBoundary();

. . . ;

end
iteration++;

end

where xp j = xp � x j, rp j = |xp j|, up is the velocity of the boundary particle and N is the set

of neighboring nodes of p. In fig. 4.10, the node 2 satisfies the conditions in eq. (4.19),

and so J = 2. Using the nearest node index J, and the boundary particle p, the direction

of motion er = �xpJ/|xpJ |. Thus, we update the boundary particle position using the

following equation

xm+1
p = xm

p + (um+1
p · em

r )em
r �t, (4.20)

for the mth timestep.
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Figure 4.10 : Motion of boundary particle along the geometry.

Convergence criteria

For a perfectly packed distribution of particles, each particle should satisfy the condition

in eq. (4.2) i.e. r i = 0. However, this would take a lot of computational time. In the case

of geometries having irrational volumes like the unit circle (having the volume equal to

⇡), one could never achieve a perfect convergence, given a fixed resolution. Thus, similar

to Jiang et al. (2015), we use the following criteria for convergence

max{|ui|8i 2 N}�t
h

< ✏, (4.21)

where ✏ = 10�4 is the tolerance for all our test cases, |ui| is the velocity magnitude of ith

particle, and we take the maximum over all the particles.

Determining the constants and timestep

It is important to choose the parameters ⇣ and kr appropriately. We observe that eq. (4.11)

scales as O(pb�x�1) and eq. (4.13) scales as O(kr�x�2). By requiring that these forces be

of the same order, we can derive the relation

kr

pb
= Ck�x, (4.22)

where Ck is an arbitrary constant. To find a suitable value, we consider a 2D lattice of

points. We then perturb a single particle by �x/4 in each direction. We apply a similar

procedure to a 3D lattice. We find that a value of Ck in the range 0.004 � 0.006 ensures

that the two forces are of the same order.
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In order to ensure stability, the damping constant has a form similar to the one sug-

gested by Colagrossi et al. (2012) given by ⇣ = C⇣/�x, where C⇣ is set in the range

0.2 � 0.5 resulting in an underdamped system.

The system evolves in pseudo-time. The time step �t is set as in Adami et al. (2013)

given by,

�tpb = 0.1
h
pb
,

�t⇣ =

s

0.1
h
⇣U
,

�t = min(�tpb ,�t⇣),

(4.23)

where U is the velocity magnitude. We note that we have used a pb = 1 for all our

simulations.

Separating interior and exterior particles

At the end of the simulation, we obtain interior (particles inside the boundary surface)

and exterior particles (particles outside the boundary surface) uniformly distributed. We

extract and use the interior particles and the boundary particles as solid particles, while

the rest of the particles as fluid particles. In order to detect interior and exterior particles,

we adopt this simple SPH-based procedure:

1. Find the nearest boundary node j to free particle i. Let the normal at the point j be

n̂ j.

2. If xi j · n̂ j > 0 then the particle i is outside, otherwise it is inside.

3. We perform steps 1�2 for all particles near the boundary surface. For particles that

are not near the boundary surface, we check the neighbors of the given particle. If a

neighbor of a particle is an exterior particle, then it is an exterior particle; otherwise,

it is an interior particle. This step works because all particles near a boundary are

already marked.

This process provides a simple method of identification of the interior and exterior par-

ticles. We note that we do this after the packing procedure is complete. This procedure

takes much less computational time compared to the packing procedure.

Implementation

We implement the algorithm using the open-source package PySPH (Ramachandran et

al., 2021). In algorithm 5, we show the pseudo-code of the proposed Hybrid method. The
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nearest neighbor particle search (NNPS) algorithm implemented in PySPH is not a part

of the current algorithm.

The algorithm first reads the input using ReadInput and initialize the particles in

CreateParticles. SetConstantAndTimeStep sets the constants and time step. The first

iteration starts with UpdateNeighbors, where we create the neighbor list for every par-

ticle. Next, we perform the acceleration computation in ComputeAccelerations and in-

tegration in IntegrateParticles. ProjectParticles converts the nearest free particles

and projects them to the surface. This procedure updates the empty_count variable. The

iterations continue until the convergence condition is true in CheckConvergence. Finally,

SeparateParticles separates the particles into internal and external particles.

Algorithm 5: Hybrid particle packing algorithm.
Result: Coordinates of solids and fluids

ReadInput();

CreateParticles();

SetConstantAndTimeStep();

p_freq = 50;

iteration = 0;

empty_count = 0;

converged = False;

while not converged do
UpdateNeighbors();

ComputeAccelerations();

IntegrateParticles();

if iteration % p_freq == 0 then
empty_count = ProjectParticles(empty_count);

if empty_count > 4 then
converged = CheckConvergence();

end
end
iteration++;

end
SeparateParticles();
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Obtaining faster convergence

The algorithm discussed above is the basic form, which adds particles slowly to the

boundary. In case when the boundary surface is smooth and does not have sharp changes,

we can use the following approaches to speed up the packing process:

• Using surface point prediction: When the boundary is smooth, one may project

0.9Ns immediately at the start. This bulk projection perturbs the distribution of the

particles significantly. If required, we project more particles to the boundary while

settling the system to an equilibrium.

• Filter layers near the boundary surface: Conforming particles to the boundary sur-

face requires that we move only some of the particles. Thus, one could filter the

free particles near the boundary surface and freeze the other particles.

• Reduce projection frequency: One can reduce it slowly once the initial projection

is complete.

• Reduce the convergence tolerance: One can potentially reduce the tolerance to in-

crease the performance of the algorithm, although this would reduce the quality of

the distribution of particles.

Doing these can potentially reduce the computations by up to a factor of two. However,

we have not performed any of these in the results presented here.

We implement the proposed algorithms in the open-source SPH framework, PySPH

(Ramachandran et al., 2021). The current implementation is open source and freely

available at https://gitlab.com/pypr/sph_geom. All the results shown in the next

section are fully reproducible using an automation framework automan (Ramachandran,

2018).

4.2 Comparison of particle packing algorithms
In this section, we compare all the particle packing algorithms discussed in this chap-

ter. We first compare the algorithms for a circular cylinder and a Z-shaped wall in two

dimensions. The Standard method is limited to two-dimensional domains, and so in three-

dimensions, we compare only the Coupled and the Hybrid method for an ellipsoid. We

also show the particle distribution for a symmetric airfoil and an arbitrarily shaped ge-

ometry using the Hybrid method at di↵erent resolutions. In the end, we demonstrate the

Hybrid algorithm for a complex-shaped Stanford bunny. All the dimensions mentioned

in this section are in SI units unless stated otherwise.

https://gitlab.com/pypr/sph_geom
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Circular cylinder

The flow of an incompressible fluid past a cylinder is a well-known benchmark problem.

In order to obtain good results, it is important to remove the e↵ect of any surface irregular-

ities due to the underlying method of geometry creation. In this test case, we compare the

circular cylinder constructed using all the approaches discussed in the previous sections.

We consider a cylinder of diameter D = 2m. In fig. 4.11, we show the geometry with

particle spacing �x = 0.1 constructed using di↵erent methods. It is clear that the Hybrid

method produces a uniform particle distribution. In the case of the Coupled method, we

observe a large number of particles near the wall surface. The Standard method seems to

have uniform particles owing to its construction.

Figure 4.11 : Solid (red) and fluid (blue) particles for a circular cylinder for �x = 0.1.

In order to investigate this further, we plot the particle density distribution as shown

in fig. 4.12. We obtain the density distribution using eq. (4.1). Clearly, the Coupled

method shows high density near the surface, and the Standard method shows a low den-

sity on the solid since we assume �x particle distance over a curved surface. The total

density variation is 8%, 16%, and 2% for the Standard, Coupled, and Hybrid methods, re-

spectively. Thus, it is clear that the proposed Hybrid method shows excellent distribution

with a maximum variation of 2%.

We study the improvement quantitatively by interpolating a C1 function over the

packed particles given by

f (x, y, z) = sin(x2 + y2 + z2). (4.24)

We approximate the function and its derivative using eq. (1.15) and eq. (1.16), respec-

tively. We evaluate the L1 error in the approximation using

L1( f � fo) =
P

j | f (x j) � fo(x j)|
N

, (4.25)
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Figure 4.12 : Particle density distribution of the packed particles for the circular cylinder

geometry for �x = 0.1.

(a) Function (b) Derivative

Figure 4.13 : L1 error for SPH approximation of function and its derivative for the cir-

cular cylinder geometry.

where fo is the SPH function approximation on a regular mesh of points, and N is the total

number of particles in the domain. The value of the function is set as per the position of

each particle as f (xi). This is then interpolated onto a regular mesh using eq. (1.15) for

function and eq. (1.16) for its gradient. We do the same for the regular points themselves
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to obtain the reference fo value at each point. We vary the value of h in order to get

convergence. We choose a value of h�x = 1.0 for �x = 0.1 and vary linearly to h�x = 1.5

for �x = 0.02. We use the quintic spline kernel for the interpolation. When comparing

the derivatives, we consider only the x derivative.

In fig. 4.13a and fig. 4.13b, we show L1 error in function and its derivative approxi-

mation. In these plots, we do not evaluate the errors near the center of the cylinder since

they do not a↵ect the flow, and also, the Standard method performs poorly in this region.

Hence, the L1 norm is evaluated only over the points where r > 0.45 D as this allows for a

fair comparison. It is clear that the Hybrid method shows a significant order of magnitude

improvement compared to both Coupled and Standard methods. The Coupled method is

slightly better than the Standard method. The Standard method shows large errors due to

the way in which we represent the surface.

Zig-Zag Wall

The zig-zag wall is one of the test cases proposed by Marrone et al. (2011) used to demon-

strate the �-SPH method. They employ the Standard packing algorithm in order to gen-

erate a solid body and pack the fluid particles around. In this test case, we pack particles

using all the algorithms and compare the density and function approximations as done

earlier. The zig-zag wall is an excellent test case for packing since it has both concave

and convex sharp edges. In order to generate a solid using the Standard method, we move

the corner nodes along the angle bisector and generate uniform points using these points

as endpoints. In the other two algorithms, we refer to these sharp points as corner nodes

and employ the method discussed in section 4.1.3 to automatically restrict the motion of

these points.

Figure 4.14 : Solids (red) and fluids (blue) for the zig-zag wall for �x = 0.05.
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Figure 4.15 : Particle density distribution for the zig-zag wall for �x = 0.05.

(a) Function approximation (b) Derivative approximation

Figure 4.16 : L1 error for SPH approximation of function and its derivative for the zig-

zag wall.

In fig. 4.14, we show the solid and fluid particles packed with �x = 0.05 using dif-

ferent algorithms. It is di�cult to conclude which of these is better. However, on looking

at the density distribution computed using the summation density as shown in fig. 4.15,

the proposed method has much less deviation from the desired density. In the case of

the Coupled method, we observe higher density at the concave corner. This increase oc-
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curs since the particles from both sides push towards the interface at the first pass of the

Coupled algorithm as discussed in section 4.1.2. The Standard method shows an uneven

variation of density near the sharp edges, which is not desirable. The total density vari-

ation is 10%, 30%, and 3% for Standard, Coupled, and Hybrid methods, respectively. It

clearly shows that the Hybrid method shows very small density variations compared to

other methods.

We perform a similar analysis over the zig-zag wall as done in the case of the cylin-

der. In order to remove the e↵ect of the interior of the solid in the standard case, we

compute the errors only up to a distance of �x inside the wall. In fig. 4.16a and fig. 4.16b,

we plot the L1 norm for the error in function and its derivative SPH approximation, respec-

tively. Clearly, the proposed method performs very well compared to the other methods.

Packing at di↵erent resolutions

In this example, we apply the Hybrid algorithm to an arbitrarily-shaped body. We show

the packing at di↵erent particle spacings in fig. 4.17. The particle spacings chosen are

0.05, 0.075, and 0.1. We place the particles at �x/2 distance away from the boundary.

Clearly, the density distribution is close to the desired value of 1.0. The particles conform

to the body surface and have a total variation of density of 2.5%, 2%, and 3% for par-

ticle spacing 0.1, 0.075, and 0.05, respectively. It shows that the proposed algorithm is

applicable to complex two-dimensional geometries.

E↵ect of convergence tolerance on the quality

This test case shows that the proposed algorithm can achieve a high-quality particle dis-

tribution for a given tolerance. We consider a symmetric airfoil, NACA0015. We choose

the endpoint at the trailing edge as a corner node. We perform particle packing using the

proposed Hybrid method for the spacing �x = 0.02.

Tolerance Iterations L1( i)

2.5e-05 19641 0.011

5.0e-05 6291 0.019

1.0e-04 1191 0.028

Table 4.1 : The table shows the e↵ect of the change in tolerance for convergence on the

number of iterations and the L1 error in the density.
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Figure 4.17 : Particle density distribution at di↵erent resolutions for an arbitrarily-

shaped object.

In table 4.1, we tabulate the number of iterations required for convergence and the

L1 error in the density for di↵erent values of the tolerance required for convergence.

It is evident from the table that the L1 error decreases with the decrease in the toler-

ance; however, the number of iterations required increases significantly. In the fig. 4.18,

we show the high-quality particle distribution achieved using a lower value of tolerance,

✏ = 2.5 ⇥ 10�5. It shows that the proposed method can achieve a high-quality particle

distribution provided we use a su�ciently low tolerance.

Particle Packing in 3D

One of the advantages of the proposed algorithm is that it can be easily extended to a three-

dimensional object, unlike the Standard method. In order to compare the packing in 3D,

we pack particles for a simple ellipsoid. The ellipsoid has semi-major axis dimensions,

a = 1.0, b = 0.5 and z = 0.75 along x, y and z axis, respectively.

In fig. 4.19a and fig. 4.19b, we show the packed particles over the surface of the

sphere for the Hybrid and Coupled methods, respectively. The color of the particles shows

the density distribution. In order to show that the particles conform to the surface, we pull

the surface along the normal by �x/2. It is clear that the Hybrid method attains a good
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Figure 4.18 : The density distribution for a symmetric airfoil with particle spacing �x =

0.02 and convergence tolerance ✏ = 2.5 ⇥ 10�5.

(a) Hybrid (b) Coupled

Figure 4.19 : Particle density distribution on the surface of the ellipsoid for �x = 0.1.

distribution of particles resulting in a density distribution very close to  o = 1.0. The

particle distribution using the Coupled method has a density near the lower range of the

scale. It is due to the fact that, unlike the Hybrid method, the Coupled method does not

project the required number of particles on the surface.

In order to perform a quantitative analysis, we adopt the comparison of the function

and derivative approximation used earlier. In fig. 4.20a and fig. 4.20b, we plot L1 error

in SPH approximation of function and its derivative, respectively. As can be seen, the

proposed method produces much lower errors at lower resolutions.

In order to show the capability of the algorithm, we also apply the proposed al-

gorithm to pack particles around the Stanford bunny geometry, as done by Jiang et al.

(2015). The geometry surface must have outward normals, and we correct the mesh using
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(a) Function approximation (b) Derivative approximation

Figure 4.20 : L1 error for SPH approximation of function and its derivative for the ellip-

soid.

a mesh manipulation tool. We choose a particle spacing of 0.02. In this case, the intention

is to show how well we capture the geometry so we do not shift the surface inside. In

fig. 4.19b, we show the particle distribution over the surface of the bunny. The results

show the applicability of the proposed algorithm to arbitrary-shaped 3D objects. After

pre-processing, we can place the 3D object anywhere in the domain with the surrounding

particles.

4.3 Summary
In this chapter, we propose an improved particle packing algorithm to simulate flows

involving complex geometries in two and three dimensions. We implement and compare

three di↵erent methods for packing particles around an arbitrary-shaped object, namely,

(i) the Standard method proposed by Colagrossi et al. (2012) along with the solid object

construction proposed by Marrone et al. (2011), (ii) the Coupled method, a modified

version of that proposed by Jiang et al. (2015), handles both the interior and exterior of

the body, and (iii) a new method that combines the best features of these methods. The

proposed method provides a uniform density distribution as a result of evenly distributed

particles. The method applies to both 2D and 3D domains. Unlike the Coupled method,

we do not require estimation of particles inside and outside. We show several benchmark

cases which highlight the accuracy of the proposed algorithm in two and three dimensions.
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Figure 4.21 : Di↵erent views showing particles (colored with particle density values)

over the Stanford bunny.

In the next chapter, we discuss various methods to implement Neumann pressure,

slip, no-slip, inflow, and outflow boundary conditions in SPH. We use the proposed pack-

ing method to construct boundary conforming solid and fluid particles for the test cases

for verification of these boundary condition implementations.



Chapter 5

Boundary condition implementations in
SPH

In SPH, the boundaries are realized using particles that may or may not interact with the

fluid particles. In this chapter, we discuss various methods in the SPH literature used to

implement boundary conditions (BCs). We classify these implementations based on the

requirement of the secondary particle arrays. In SPH, two types of particles are used to

implement boundary conditions, viz. ghost and virtual particles. The ghost particles carry

the extrapolated properties from the fluid and influence the fluid particles. Whereas the

virtual particles are used to evaluate some intermediate value of a property from fluid

and do not a↵ect the actual flow. In the case of the solid boundary, researchers have

proposed di↵erent methods to either ensure force balance or accurate function extrapola-

tion. However, in the case of open boundary, along with accurate function extrapolation,

non-reflection of the pressure waves is an additional requirement. We propose a novel

implementation that ensures both conditions. Furthermore, we demonstrate that the tra-

ditional test cases to identify non-reflecting nature need to be revised. Therefore, we

propose a suite of new test cases that tests specific feature of a non-reflecting boundary

condition (NRBC) implementation. In the next section, we discuss various solid boundary

implementations followed by open boundary conditions.

5.1 Solid boundary conditions
Many authors (Ferrand et al., 2013; Hashemi et al., 2012; Marongiu et al., 2007) have

proposed di↵erent approaches where a single layer of ghost particles is used. In order

to assess the e↵ect of the number of layers on the accuracy of the second-order accurate

gradient and Laplacian discretization, we perform a simple numerical test. In this test, we

119
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consider a finite 2D domain of size 1m ⇥ 1m. We discretize the domain using particles at

di↵erent resolutions and initialize various properties using

u(x, y) = sin(4⇡(x + y)),

v(x, y) = cos(4⇡(x + y)),

p(x, y) = sin(4⇡x) + sin(4⇡y).

(5.1)

Figure 5.1 : L1 error in pressure gradient (left) and Laplacian (right) approximation with

change in the skipped number of layers.

We compute the SPH approximation of the pressure gradient and Laplacian of ve-

locity on the particles using the discretization used in the L-IPST-C scheme. Since the

particles near the boundary do not have complete support, they will have higher errors

compared to the inner particles. We compute the L1 error in the approximation using

L1(N) =
PN

j | f (x j) � fo(x j)|
N

, (5.2)

where f (xi) is the computed value and fo(xi) is the actual value, N are the number of

particles in the domain (1 � 2l�x) ⇥ (1 � 2l�x), where l is the number of layers skipped

from each side. In fig. 5.1, we plot the L1 error for the particles skipping l-layers of par-

ticles from the outermost boundary for pressure gradient and Laplacian approximations.

We note that both discretizations used are second-order accurate in a periodic domain

(see section 2.2). However, we observe that the pressure gradient is second-order accu-

rate even when zero layers of particles are surrounding the domain of interest. Whereas

for the Laplacian approximation, we require at least 2 layers of particles. Since all the

second-order accurate formulations for Laplacian approximation require a gradient on all

the neighboring particles (see section 2.2.3) therefore the requirement for the number of

neighboring particles is double to that in the case of the gradient approximation for the

second-order accurate convergence.
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This numerical test shows that the boundary implementation, which uses a single

layer of particles is bound to have an error in Laplacian approximation resulting in an in-

accurate solution, irrespective of having an accurate boundary condition implementation.

Furthermore, since all the second-order viscosity formulations require the evaluation of

the gradient on the boundary particle as discussed in section 2.2.3, we do not pursue the

implementation of boundaries based on the local point symmetry method in Ferrari et al.

(2009) and Fourtakas et al. (2015; 2019) for the no-slip boundary condition. The various

solid boundary implementations considered are as follows:

I. Using a single layer of ghost particles on the boundary surface

A. With virtual particles

In these methods, only one layer of particles is used on the boundary surface. Marongiu et

al. (2007) proposed a characteristics-based evolution equation for density update at these

boundary particles, given by

d⇢
dt
= co

@⇢

@n̂
� ⇢@un

@n̂
� ⇢g · n̂

co
, (5.3)

where n̂ is the normal of the boundary surface pointing into the fluid, @(·)
@n̂ is the directional

derivative along the normal, and un = u · n̂. In order to evaluate the gradient at the

boundary point five-point finite di↵erence approximation is used. These five points are

generated along the normal of the boundary particle at a spacing equal to the average

particle spacing represented by black points in fig. 5.2 for a single particle. The values of

the properties at these black points are evaluated using Shepard interpolation (Shepard,

1968).

B. Without virtual particles

Hashemi et al. (2012) proposed methods to implement pressure and no-slip boundary

conditions using one layer of boundary particles on the surface. However, they do not

use any extra set of elements to derive the values on the boundary elements denoted by

red particles in the fig. 5.2. In order to satisfy the no-slip boundary condition the velocity

of the red particles is kept the same as the velocity of the solid boundary. Whereas for

pressure boundary implementation, momentum balance is performed along the normal of

the boundary surface, given by

rp
⇢
· n̂ = �du

dt
· n̂ + µr

2u
⇢
· n̂ + g · n̂, (5.4)
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Interface
Fluid Solid

kh

Figure 5.2 : Arrangement of ghost and virtual particles for a given fluid particle denoted

by blue circles. The dashed line is the boundary surface, red particles are

ghost (solid) particles. The black dots are generated to evaluate the gradient

using finite di↵erences at the red boundary points.

where n is the normal of the boundary surface pointing into the fluid. Equation (5.4) is

discretized using the second-order consistent approximation to obtain the pressure at ith

solid boundary particles, given by

pi =

⇣ p j

⇢i
rW̃i j! j

⌘
· n̂i �

D
�du

dt · n̂ +
µr2u
⇢ · n̂ + g · n̂

E
i⇣

1
⇢i
rW̃i j! j

⌘
· n̂i

, (5.5)

where rW̃i j is the corrected kernel gradient.

II. Using multiple layers of ghost particles outside boundary surface

A. With virtual particles

Marrone et al. (2011) proposed a method where fixed virtual particles are generated by

reflecting the ghost particles about the interface. The created particles are illustrated in

the fig. 5.3, where red crosses are the virtual particles and red particles on the right repre-

sent the ghost particles. The properties on the ghost particles are set as ⇢g = ⇢v, pg = pv,

and the velocity is set according to the slip or no-slip condition required, where ⇤g rep-

resent the property value on ghost particle and ⇤v represent the property value on the

corresponding virtual particle. In the case of the slip boundary, the velocity normal to the

wall is reversed, whereas in the case of the no-slip boundary, the velocity is set negative

of the value on the corresponding virtual particle. The properties of the virtual particles
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Interface
Fluid Solid

Figure 5.3 : Arrangement of ghost and virtual particle for given blue fluid particles. The

dashed line shows the solid boundary. The red circles on the right are the

ghost particles, and the red crosses are created by reflecting the ghost about

the interface.

are evaluated using

�i =
X

j

� jW̃i j! j, (5.6)

where �⇤ is the desired property, ! j is the truncated volume of the fluid particles and W̃i j

is the kernel corrected using the method by Liu et al. (2006). The sum j is taken over all

the fluid particles in support of the kernel,

B. Without virtual particles

In the SPH literature, most of the methods for boundary condition implementation use

multiple layers of ghost particle such that the kernel has full support. Takeda et al. (1994)

proposed to extrapolate the properties using a linear interpolation depending upon the

distance of the ghost particle from the nearest fluid particle shown in fig. 5.4. The extrap-

olated velocity is given by

u j = �ui
r j � ro

ro � ri
, (5.7)

where r j� ro and ro� ri are the distances along the normal from the boundary for jth ghost

and ith fluid particle, respectively. ro is the location of the boundary surface intersection

the line joining the ith and jth particle. We select the nearest fluid particle as the ith for a

corresponding jth ghost particle along the normal of the boundary.

Randles et al. (1996) proposed a boundary condition for pressure. The prescribed

pressure value pbc is assigned to the ghost particles in red, and the values on the light
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Interface
Fluid Solid

(ro � ri)

(r j � ro)

Figure 5.4 : Arrangement of particles for the method proposed by Takeda et al. (1994).

The ghost particles are shown in red, and the fluid particles are shown in

blue color. The value of the red particles are interpolated using the nearest

fluid particle along the normal of the boundary surface.

blue fluid particles as shown in fig. 5.5 are set such that the desired boundary condition is

satisfied. The value of light blue fluid particles is given by

pi = pbc +

P
j2I(pj � pbc)Wi j! j

1 �P
j2B Wi j! j

, (5.8)

where I is the set of blue particles, B is the set of red particle, and pressure is evaluated at

each ith light blue particle shown in fig. 5.5.

Adami et al. (2012) proposed the method where Shepard interpolation is employed

to extrapolate properties from fluid to ghost particles. The property at a ghost particle is

given by

�i =

P
j � jWi jP

j Wi j
, (5.9)

where sum j is over all the fluid particles in support of the kernel as shown by red dashed

circle in fig. 5.5, at the ith ghost particle. Furthermore, Esmaili Sikarudi et al. (2016)

proposed to perform a first-order accurate extrapolation to evaluate the properties of ghost

particles.

Colagrossi et al. (2003) proposed to mirror the fluid particles near the solid interface,

about the interface to generate ghost particles as shown in fig. 5.6. These ghost particles

carry the velocity of the opposite sign to implement no penetration. The value of pressure

and density is kept the same. In order to implement this method, we create new particles

for solids from the fluid particles before each time step.
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Figure 5.5 : Arrangement of particles for the method proposed by Randles et al. (1996)

and Adami et al. (2012) for the fluid particles in blue. The boundary in-

terface is shown by the dashed line. The red circles on the left represent

the ghost solid particles. The property of the light blue fluid particles are

manipulated to satisfy boundary conditions.

Interface
Fluid Solid

Figure 5.6 : Arrangement of particles for the method proposed by Colagrossi et al.

(2003) for the fluid particles in blue, and boundary represented by the

dashed line. The ghost particles in red represent the solid created by the

mirror reflection of fluid particles about the interface.
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5.2 Open boundary conditions
Open boundary conditions are required to simulate a wind-tunnel kind of simulation in

SPH. It consists of an inlet from where the particles are added to the domain and an outlet

from where the particles exit the domain as shown in fig. 5.7. The particles added to the

domain should have prescribed inlet velocity and should not introduce any artifacts in the

flow, whereas the outlet should remove particles from the flow without a↵ecting the flow.

Since we use a weakly-compressible scheme, pressure waves are inevitable. Therefore,

the inlet/outlet must be non-reflecting along with adherence to the boundary condition.

In fig. 5.7, we show a schematic arrangement of the inlet, fluid, and outlet domains. The

dashed lines between di↵erent regions are the boundary surfaces. The inlet/fluid particles

are converted to fluid/outlet particles once they cross the boundary surface. Many authors

(Federico et al., 2012; Lastiwka et al., 2009; Tafuni et al., 2018) have proposed di↵erent

methods to implement inlet/outlet boundary conditions in SPH. Open boundary condition

implementations considered in this work are as follows:

Fluid OutletInlet

Figure 5.7 : Schematic of the arrangement of fluid with the inlet and outlet particles.

The top and bottom are supported by solid particles not shown in the figure.

I. Do-nothing

Federico et al. (2012) proposed the method to implement outlet boundary where

the properties of the fluid particles crossing the fluid-outlet interface are fixed in time.

Therefore, the particle, after crossing the interface, advects with a constant velocity.

We propose a subtle modification to the standard do-nothing method described

above. Unlike the standard do-nothing where the outlet moves with a velocity with which
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it left the fluid domain, we propose to extrapolate the transport velocity of the fluid to

determine the transport velocity of the outlet particles. Thus the advection is given by

xn
o = xn�1

o + ũn�t, (5.10)

where ũn is the Shepard extrapolated fluid velocity at timestep n given as

ũi =

P
j ũ jWi jP

j Wi j
, (5.11)

where the sum is taken over all the fluid particles j in the neighborhood of ith outlet

particle. It must be noted that the advection velocities are only used to advect the particles

and the actual velocity of the outlet particles remain the ones frozen when the fluid particle

is converted to the outlet particle. We refer to this method as modified do-nothing.

II. Mirror

Tafuni et al. (2018) proposed a method applicable to both inlets and outlets. The

properties from the fluid are stored on the virtual particles generated by reflecting the in-

let/outlet particles about the interface, as shown in fig. 5.8. The desired property and its

gradient are evaluated for each mirror particle using a first-order consistent approxima-

tion. From the mirror particle, the property of the corresponding outlet/inlet particle is

evaluated using

�o = �m � �xomr�m, (5.12)

where �m and r�m are the properties of the mirror particle and �xom is the distance be-

tween the outlet and mirror particle. In addition to this method, we test the convergence

of the method when the Taylor series correction is not applied such that the eq. (5.12) is

simplified to

�o = �i. (5.13)

We refer to this method as simple-mirror.

III. Hybrid

Lastiwka et al. (2009) proposed a non-reflecting inlet and outlet boundary imple-

mentation using the method of characteristics (MOC). The characteristics of the flow are

given by

J1 = �c2
o(⇢ � ⇢o) + (p � po),

J2 = ⇢co(u � uo) + (p � po),

J3 = �⇢co(u � uo) + (p � po),

(5.14)
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Fluid OutletInlet

�xim

�xom

Figure 5.8 : Schematic of the arrangement of fluid with the inlet and outlet particles

and their corresponding virtual particles are shown in light red and red,

respectively.

where ⇢o, uo, and po are the reference density, velocity normal to the outlet, and pressure.

These characteristics are extrapolated to the inlet/outlet particles, and the properties are

calculated using the extrapolated characteristics, given by

⇢ = ⇢o +
1
c2

o

 
�J1 +

1
2

J2 +
1
2

J3

!
,

u = uo +
1

2⇢co
(J2 � J3) ,

p = po +
1
2

(J2 + J3) .

(5.15)

In order to implement the inlet boundary, J1 and J2 should be set to zero and J3 must be

extrapolated from the fluid to the inlet particles. On the other hand, for outlet J1 and J2

are extrapolated from the fluid to the outlet, and J3 is set to zero.

Lastiwka et al. (2009) do not specify the method to obtain the reference values in

eq. (5.14). Therefore, we describe a hybrid method to implement outlet/inlet boundaries

that combines the features of the do-nothing method and the method of characteristics

discussed above. At the inlet/outlet, essentially two kinds of fluctuations are encountered,

namely spatial variations, which do not change rapidly in time, and variations due to

acoustic waves, which travel with the artificial speed of sound. The weakly compressible

SPH schemes generate perturbations that travel with the prescribed speed of sound, unlike

ISPH schemes which solve for a pressure-Poisson equation. In the case of a do-nothing

type of outlet boundary, as described earlier, the particle properties are frozen. As a result,

when the acoustic wave arrives at the outlet, its velocity suddenly drops to the particle

velocity in the outlet. This causes an increase in the pressure for particles that are near the
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outlet. We propose a method to separate the fluid flow properties into acoustic and base

flow properties.

A time-averaged property of the flow is given by

�avg =

PNt
n=1 �n

Nt
, (5.16)

where � is the fluid property, Nt is the number of time steps used in the averaging. The

value of Nt can be estimated by determining the number of time steps the acoustic wave

takes to move from one particle to another, given by

Nt =
�x

�t(U + co)
. (5.17)

In all our test cases, Nt ⇡ 4. Thus, in order to have an optimum mean, we take Nt = 6 for

all our test cases. Further, in order to detect the acoustic wave, the acoustic intensity is

used as a parameter. The time-averaged properties are not changed whenever the acoustic

intensity I of the flow is greater than the prescribed value Io. The acoustic intensity I is

given by p2/(2⇢co) (Kinsler et al., 1999). The prescribed value of acoustic intensity Io can

be determined using the inlet velocity, |ui| and is given by

Io =
(1

2⇢|u|2i )2

2⇢co
. (5.18)

The di↵erence between the particle property and its time average gives us the acoustic

component. The time-averaged part is advected out of the domain using the do-nothing

method. Since the acoustic wave travels with the speed of sound, it should be propagated

out with the same. We use the method of characteristics described above to propagate

these acoustic perturbations into the outlet, where the reference values are the time aver-

ages. In our implementation, we keep ⇢o fixed.

When a particle moves from the fluid domain into the outlet, it retains its time av-

erage values. The acoustic properties are added to this using Shepard interpolation to the

outlet zone as

�o = �ac + �avg, (5.19)

where �ac is determined using the extrapolated J2 as explained above. Since the do-

nothing condition is used at the outlet for the time-averaged values, the proposed method

cannot simulate incoming flow near the outlet; however, it is suitable for wind tunnel

type of flow where the flow always exits the outlet from one side. The particles in the

outlet layer are advected using the velocity evaluated with the equation (5.19) (assuming

the outlet is perpendicular to the x-axis). The particles are not moved in the transverse

direction. We note that the Shepard interpolation of the properties from the fluid will not
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always get extrapolated to all the particles in the outlet. These particles are advected with

the average of the existing outlet advection velocity. In the inlet, the �avg do not change

much, and the acoustic part is simply added as in the case of outlet. In the next section,

we propose various test cases to compare the non-reflecting boundary condition (NRBC)

implementations discussed above.

5.2.1 Test cases for open BC implementations

In this section, we compare the di↵erent methods for the non-reflecting with a variety

of test cases. We first simulate the flow past a backward-facing step and a circular cylinder.

We employ the EDAC scheme (see appendix A.5.4) to solve the governing equations. We

apply the mirror method at the inlet and di↵erent NRBC implementations at the outlet.

We show that these test cases are not only computationally expensive but also unable to

contrast against a method that reflects the pressure waves.

We subsequently propose various test cases that take a small amount of computa-

tional e↵ort and highlights specific issues. The new problems are all two-dimensional,

and this makes them relatively easy to implement. They include a one-dimensional pulse

(in a two-dimensional domain), a two-dimensional pulse, a two-dimensional vortex, and a

ramp inlet condition in order to test the typical conditions that outlets encounter. In order

to obtain a solution representing an infinite domain for comparison, we simulate the flow

in a very long domain. The properties of the fluid are measured at a probe placed inside

the domain at a distance d from the inlet. The length of the domain L is chosen to be

d + cot, where t is the simulation time. We treat the fluid as inviscid and use a particle

spacing of �x = 0.1 unless stated otherwise in all our test cases. We use the results in the

long domain as a reference and use this to compute the L2 error in various properties at

time t using

L2(�) =
0
BBBB@
P

j(�(x j, t) � �o(x j, t))2

P
n(�o(x j, t))2

1
CCCCA

1/2

, (5.20)

where � is the property of interest at a particular timestep and �o is the corresponding

property in the long domain.

2D backward-facing step

Backward-facing step is a classical problem to test the accuracy of open boundary con-

dition implementations in SPH. For this problem, following the experimental work of

Armaly et al. (1983), the step height is set as, h = 4.9mm with inlet width hi = 5.2mm.

We compare the velocity profile at di↵erent stations with x/h = 2.55, 3.57, 4.80, 7.14

(where x is the distance downstream from the step). We compare our results with the
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experimental results in Armaly et al. (1983). The Reynolds number of the flow is chosen

to be 389 since the flow is no longer two-dimensional above this. In the simulation, we

set ⇢ = 1.225kg/m3 and ⌫ = 1.47 ⇥ 10�5m2/s and calculate inlet velocity U using the

relation Re = 2Uhi/⌫. The schematic of the simulation model is shown in fig. 5.9.

5.2

0.75 L0.25 L

h=4.9

inlet fluid
outlet

wall

Slip wall

Figure 5.9 : Sketch of the domain used for backward-facing step simulations (all dimen-

sions in mm).

At the walls, we satisfy the no-slip boundary condition. However, since the inlet

is set at a constant velocity, a no-slip wall introduces non-physical pressure fluctuations.

Thus a small part of the initial wall is set as a slip wall. Similarly, near the outlet, we allow

slip at the wall in order to avoid vortices at the start of the flow. In this test, we have shown

results for our proposed method and do-nothing only since the characteristic method and

mirror methods failed to complete. In the case of the mirror method, the vortices reach

the outlet and the simulation blows up. In the case of MOC, the criteria for reference

parameter is not known. In fig. 5.10, we show the velocity profile for all the methods. It is

evident from the plot that all the methods (hybrid, do-nothing, and modified do-nothing)

are able to reproduce the results presented by Armaly et al. (1983).

Method xrl/h

Do-Nothing 8.030

Hybrid 8.009

New Do-Nothing 7.901

Table 5.1 : The reattachment length for Re = 389 for di↵erent outlet implementations.
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Figure 5.10 : Velocity at t = 1.2sec for Re = 389 at di↵erent locations.

The reattachment length for the primary vortex is determined and presented in ta-

ble 5.1. We can clearly see that the reattachment length is very close to the experimental

value 7.94 from Armaly et al. (1983). This test case clearly shows that the proposed

method shows very less di↵erence from the experimental values compared to other meth-

ods. However, all the existing methods work equally well.

Flow past a 2D circular cylinder

The flow past a circular cylinder is a well-known benchmark to show the capability of

inlet/outlet boundaries. We simulate this problem for all the methods described in this

section. We consider a smaller domain compared to earlier research with fewer particles

to show the e↵ectiveness of the proposed method (Marrone et al., 2013; Tafuni et al.,

2018). We consider a cylinder of diameter D = 2m. The channel width is 15D to avoid

the e↵ect of the wall and the length is 15D, which is aligned along the x-axis. The cylinder

is at 5D from the inlet interface as shown in fig. 5.11. Each inlet, outlet, and wall have

6 layers of particles which are enough to get full kernel support. The inlet is given a

constant prescribed velocity, U = 1m/s. The walls act as a slip wall in order to avoid the

e↵ect of the boundary layer from the walls. The fluid properties, such as the kinematic

viscosity of the flow, is evaluated using ⌫ = UD/Re, where Re is the Reynolds number

of the flow and density ⇢ = 1000kg/m3. We use a particle spacing �x = 0.0667 and

h�x = 1.2 which result in 201694 fluid particles in the domain. This spacing results in a

cell Reynolds number of Recell = Uh/⌫ of 8. This suggests that this is a coarse simulation.

In order to capture the curvature of the cylinder, we use the standard method as discussed

in chapter 4.
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15D

15D
D

5D

inlet

fluid

outlet

wall

Figure 5.11 : Sketch of the domain used for the flow past a circular cylinder simulations.

We simulate the model for Re = 200 for all the methods. We normalize p and u

measured at the probe such that u⇤ = u/U and p⇤ = 2p
⇢U2 respectively. In fig. 5.12 and

fig. 5.13, we show the pressure and velocity distribution at t = 150s, respectively, when

the vortex shedding is well established. In the case of the mirror method, due to the high

gradient near the outlet, spurious pressures arise, and the particle positions diverge. It

is evident from the pressure plots in fig. 5.12 that the MOC reflects the pressure back

into the domain when vortex shedding starts. In the case of do-nothing and modified

do-nothing a significant increase in pressure of the domain is visible. Pressure for both

hybrid and characteristic methods looks to be distributed around zero, which is essential

for low numerical errors in pressure calculations. In fig. 5.13, all the methods show a

similar pattern of the velocity field, and it is hard to comment on the relative merits of the

methods.

In order to check the accuracy of the methods, we calculate the drag (Fd = Fx) and

lift (Fl = Fy) forces on the cylinder for all the cases and evaluate the coe�cient of drag,

cd = Fd/(0.5⇢U2), and lift cl = Fl/(0.5⇢U2). A five-point average is taken to filter the

noise. The force on the solid cylinder is determined by solving the momentum equation
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Figure 5.12 : Normalized pressure at t = 150sec for Re = 200.

given by

Fsolid

msolid
= �1

⇢
rp + ⌫r2u. (5.21)

The above equation is discretized the same as done in the EDAC scheme. We also evaluate

the Strouhal number S t = f D/U where f is the frequency of shedding. In fig. 5.14, we

compare cl for all the methods over time. The mirror method blows up after short time

and generates a large back pressure. In the case of do-nothing and modified do-nothing,

shedding starts earlier compared to hybrid and characteristic methods. In table 5.2, we

compare cd and cl and S t for all the methods and with results published by Guerrero

(2009), Marrone et al. (2013), and Tafuni et al. (2018). We can see that in spite of having

non-physical pressure variations in characteristic methods the value of cd and cl shows a

close match. In the case of both do-nothing and modified do-nothing the values are close

since the pressure increase of the domain is insignificant in the case of incompressible

flows. In our proposed hybrid method, the pressure and velocity plots look similar to

results published by Marrone et al. (2013) and Tafuni et al. (2018), the cd and cl are in the

acceptable range presented in the literature.
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Figure 5.13 : Normalized velocity at t = 150sec for Re = 200.

Method cd cl St

Characteristic 1.494 ± 0.05 ±0.634 ±0.200

Do-Nothing 1.532 ± 0.05 ±0.744 ±0.210

Hybrid 1.524 ± 0.05 ±0.722 ±0.210

New Do-Nothing 1.540 ± 0.05 ±0.729 ±0.210

Marrone et al. (2013) 1.38 ± 0.05 ±0.680 0.200

Guerrero (2009) 1.409 ± 0.048 ±0.725 -

Tafuni et al. (2018) 1.46 ±0.693 0.206

Table 5.2 : Comparison of cl, cd and S t values for di↵erent methods for Re = 200.

In the previous two test cases, we demonstrated that all the boundary condition im-

plementations show accurate results irrespective of the absence of the non-reflective na-

ture. Therefore, these test cases do not test the essential non-reflective nature of an outlet

boundary implementation. In the next section, we use existing and propose new test cases

that test various aspects of an outlet boundary implementation.
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Figure 5.14 : Plot for cd for all methods at Re=200

1D Pressure bump

This test case was proposed by Lastiwka et al. (2009). In this test case, the fluid domain

is initialized with a pressure variation given by

p(x) = 1.0 � 0.2e
�(x�0.5)2

0.001 . (5.22)

The pressure at the inlet and outlet is initialized with p = 1.0. The velocity of the domain,

including inlet and outlet, remains constant (=1m/s) for all times. The domain length

is 1m, and the pressure bump is at x = 0.5m. We use the artificial viscosity parameter,

↵ = 0.1, as mentioned in Lastiwka et al. (2009). We simulated the test case for all

the outlet boundary implementations described in the previous section. In the case of

the MOC for all the test cases uo, po and ⇢o is taken as 1.0m/s, 1.0 Pa and 1000kg/m3
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respectively. In fig. 5.15, we compare the pressure along the centerline of the domain

at di↵erent times for all the methods. It can be seen that the mirroring technique results

in a significant drop in pressure towards the end. The modified do-nothing increases the

pressure in the domain by a small amount. All other cases match well with the MOC and

the long domain.

Figure 5.15 : Pressure plot at various times for the di↵erent methods. The solid line

denotes the solution with the long domain.

2D pulse

This benchmark tests the non-reflectivity for a two-dimensional disturbance. A 2D do-

main is considered, consisting of fluid with domain length L = 2m and width W = 2m.

The probe is placed at d = 1.7m from the inlet. The fluid region is constrained by inviscid

walls on both sides. The inflow is taken from the left, and the outlet is kept at the right of
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the fluid. The inlet, wall, and outlet are initialized with 6 layers of particles. In order to

introduce a 2D variation, the x-component of the velocity is made a function of y, given

by

u(x, y, t) =

8>>><
>>>:

1.0 + 0.5 cos
⇣
⇡y
12

⌘
e

(t�1)2
� 1.0 < t < 1.1,

1.0 elsewhere.
(5.23)

Figure 5.16 shows the plot of u⇤ and p⇤ versus time for the di↵erent outlets and table 5.3

shows L2 errors in the pressure and velocity for the di↵erent outlet implementations.

Figure 5.16 : Normalized pressure (left) and velocity (right) plots at x = 1.7m with time

for 2D varying inlet.

The pressure variation with the MOC and hybrid methods are very close to the re-

sults for a long domain compared to the mirror and do-nothing methods. It can be seen

that the mirroring technique generates a lot of reflections into the fluid as compared to

do-nothing and MOC. In the case of the do-nothing, a significant increase in pressure can

be seen just after the wave passes through the outlet (at around 1.25s).

Methods L2(p⇤) L2(u⇤)

Characteristic 0.328 0.057

Do-Nothing 0.629 0.038

Hybrid 0.311 0.035

Mirror 0.409 0.106

New Do-Nothing 0.341 0.042

Table 5.3 : L2 error in the p⇤ and u⇤ measured at the probe for the 2D pulse problem.

Looking at the variation of the velocity, we can see that both modified do-nothing

and new hybrid method show a close match to the results for a long domain. After 2s, the
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MOC method di↵ers from the long-domain results due to the spatial variations arriving

near the outlet. The modified do-nothing method is clearly better than the standard do-

nothing scheme. These conclusions are also borne out by the values of the L2 norm as

seen in table 5.3. The proposed hybrid method has the least errors.

Figure 5.17 : Normalized pressure (left) and velocity (right) along the y = 0 line for the

2D pulse problem. The left of the dashed red line is fluid, and the right is

outlet region.

Figure 5.18 : Normalized pressure (left) and velocity gradients (right) along the y = 0

line for the 2D pulse problem. Left of the dashed red line is fluid and right

is outlet region.

In order to show the nature of the property variation across the fluid outlet interface

due to extrapolation, we interpolate pressure, velocity and their gradients on a y = 0 line

as shown in fig. 5.17 and fig. 5.18. In the case of the mirror method, the gradient of the
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property is zero at the interface. The property is mirrored about the domain boundary;

however, both hybrid and do-nothing retain the history of the particle such that velocity

and pressure in the outlet does not a↵ect the upstream flow. On looking at the gradient

along x of the property for all the methods in fig. 5.18, we find that the mirroring technique

impose natural boundary conditions on fluid particles near the outlet i.e @u/@x = 0, and

@p/@x = 0. In case of do-nothing and modified do-nothing, the velocity and pressure

profiles matched the long domain but the gradient changes significantly. However, the

method of characteristics and hybrid maintains the flow gradients along with the flow

variables as they are. In the context of the SPH, the latter seems to be very important.

As discussed in appendix A.5.4, the EDAC method involves a parameter called ↵,

which increases the pressure damping. We explore varying the parameter ↵ and study the

error in p⇤ for the di↵erent schemes in table 5.4. It can be observed that as ↵ increases,

the pressure oscillations are reduced, and therefore, the errors reduce for all the schemes.

However, the greatest reduction is for the original do-nothing and mirror methods. The

others are not significantly a↵ected. This suggests that the hybrid method and modified

do-nothing are robust techniques.

Methods ↵ = 0.1 ↵ = 0.2 ↵ = 0.5 ↵ = 1.0

Characteristic 0.336 0.334 0.328 0.315

Do-Nothing 1.135 0.864 0.629 0.587

Hybrid 0.339 0.319 0.311 0.306

Mirror 0.533 0.463 0.409 0.371

New Do-Nothing 0.391 0.543 0.341 0.354

Table 5.4 : L2 error in p⇤ measured at the probe for the 2D pulse with the change in

EDAC parameter ↵.

1D ramp

In this test case, we impose a ramp velocity on the inlet particles such that u = 0m/s at

t = 0s and u = 1m/s at t = 1s. After time t = 1s, we fix the velocity at 1m/s. The size

of the domain, boundary conditions, and initialization are the same as in the case of the

2D pulse. We simulate the test case for each method and compare it with results for a

long domain. In fig. 5.19, we plot the p⇤ and u⇤ in the domain and tabulate the L2 errors

in table 5.5. In the case of pressure, the hybrid, mirror, and modified do-nothing methods

work well. The standard do-nothing method generates a significantly high pressure as the

initial particles at the outlet do not move and thereby cause an increase in pressure. In the
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Figure 5.19 : Normalized pressure (left) and velocity (right) plots at x = 1.7m with time

for ramp inlet.

case of the MOC, there is no specific method to determine the reference values uo and po

at the initial stage, and this seems to cause the problems. Similar issues are seen in the

case of the velocity for the MOC. As seen in table 5.5, the hybrid method has the least

errors for both pressure and velocity.

Methods L2(p⇤) L2(u⇤)

Characteristic 1.099 0.193

Do-Nothing 0.433 0.066

Hybrid 0.043 0.007

Mirror 0.123 0.074

New Do-Nothing 0.197 0.039

Table 5.5 : L2 error in the p⇤ and u⇤ measured at the probe for the ramp velocity problem.

2D vortex

In this test case, a vortex is generated in the inlet moving with a constant velocity of

1m/s and allowed to go through the outlet. This case tests the outlet for permeability for

a velocity variation similar to vortex shedding. It is important that this be preserved for

most engineering flow simulations. The domain size is kept the same as in the case of

the 2D pulse; however the width is doubled to accommodate the vortex. The vortex is

generated by changing the velocity at the inlet with time using

(u, v) =
 
1.0 +

�y

r2 + 0.2
,
��x

r2 + 0.2

!
, (5.24)
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where � = 0.1 is the vortex strength, and r =
p

x2 + y2 is the distance from the center of

the vortex. In order to calculate the distance of the vortex, we set

x = u(1 � t), (5.25)

where u is the speed of the vortex and 1.0 is the initial distance of the vortex center from

the beginning of the inlet. We test the vortex advection with the methods and compare

them with the results for a long domain.

Figure 5.20 : Normalized pressure (left), u-velocity (right) and v-velocity (center) plots

at x = 1.7m with time for 2D vortex advection with 1m/s.

In fig. 5.20, we have plot the p⇤, u⇤, and v⇤ for the di↵erent methods. In table 5.6,

we tabulate the L2 errors of the pressure and velocity. It is evident from the plots that the

do-nothing, modified do-nothing, and our new hybrid method match the results of a long

domain well. However, in the case of mirror method, a lot of back pressure fluctuation is

visible. The MOC shows a significant deviation from the long domain and also does not

preserve the velocity variation. In the pressure plot, we can see that the mirror method
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Methods L2(p⇤) L2(u⇤) L2(v⇤)

Characteristic 1.216 0.013 0.959

Do-Nothing 0.554 0.002 0.174

Hybrid 0.569 0.002 0.173

Mirror 1.588 0.010 0.806

New Do-Nothing 0.629 0.002 0.182

Table 5.6 : L2 error in the p⇤, u⇤, and v⇤ measured at the probe for the moving vortex

problem, with no viscosity.

Methods L2(p⇤) L2(u⇤) L2(v⇤)

Characteristic 0.556 0.001 0.263

Do-Nothing 0.521 0.001 0.258

Hybrid 0.519 0.001 0.255

Mirror 0.475 0.006 0.725

New Do-Nothing 0.556 0.001 0.263

Table 5.7 : L2 error in the p⇤, u⇤, and v⇤ measured at the probe for the moving vortex

problem, with Re = 100.

Methods L2(p⇤) L2(u⇤) L2(v⇤)

Characteristic 1.213 0.013 0.961

Do-Nothing 0.553 0.002 0.175

Hybrid 0.566 0.002 0.173

Mirror 1.541 0.010 0.803

New Do-Nothing 0.589 0.002 0.181

Table 5.8 : L2 error in the p⇤, u⇤, and v⇤ measured at the probe for the moving vortex

problem, with Re = 10000.

shows a perfect match before the vortex reaches the probe. Thus it is suitable for outlets

with very low gradients. However, once the vortex reaches the probe, the results of the

mirror method are very poor. The L2 errors clearly show that the do-nothing methods and

the hybrid schemes work well. In particular, the error in p and v is high for the mirror and

method of characteristic.
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As mentioned earlier, all our simulations are inviscid, which suggests an infinite

Reynolds number. However, to investigate the e↵ect of the Reynolds number on the out-

let, we performed the above simulation at Re = 100 and 10000. In table 5.7 and table 5.8,

we show the errors for Re = 100 and 10000, respectively. The hybrid method and do-

nothing have low errors compared to other methods. Furthermore, as the Reynolds num-

ber reduces, the fluid becomes increasingly viscous; therefore, the errors in the method

of characteristics and the mirror method reduce. This shows the importance of the new

method.

5.3 Summary
In this chapter, we review the established techniques for implementing various boundary

conditions in the context of weakly-compressible SPH schemes. In the case of open

boundary conditions, non-reflectivity is very important. We show that the traditional test

cases, like flow past a circular cylinder and backward-facing step, are unable to capture

this property. In order to systematically examine the NRBC, we construct four simple test

problems. These tests clearly show the deficiencies of the existing approaches.

• Do-nothing method is only suitable for problems where high-intensity acoustic

pressure waves are absent.

• The mirror method works best for flows where the gradients are very low near the

outlet.

• The MOC shows excellent results where reference properties are known a priori but

are not very e↵ective when there are gradients in the flow at the exit.

Based on this, we propose a new generalized scheme which combines the do-nothing and

characteristic-based outlet into a new hybrid technique. The proposed technique works

well with both high-intensity acoustic waves and high-gradient flow near the outlet. Un-

like the MOC, it calculates reference flow variables by time averaging. We also propose a

simpler and slightly modified do-nothing boundary condition that produces good results.

The test cases considered in this chapter simulate an actual fluid flow. However, in

the MMS, we can initialize the field using any suitable field to limit the test to a particular

aspect of the implementation. In the next chapter, we discuss the procedure one should

follow to manufacture a solution to verify the boundary condition implementations dis-

cussed in this chapter. We use these manufactured solutions to verify the convergence of

these boundary condition implementations.



Chapter 6

Verification of boundary condition
implementations

In this chapter, we construct various manufactured solutions (MSs) to satisfy the boundary

condition (BC) on di↵erent domain shapes. We propose di↵erent MSs to verify Neumann

pressure, slip, and no-slip boundary conditions for straight, convex, and concave boundary

surfaces. We also propose MSs for inflow and outflow boundary conditions with and

without a wave traveling through the interface. Bond et al. (2007) and Choudhary (2015)

proposed a method to construct MS for boundary condition verification of mesh-based

codes. Assuming an MS for a periodic domain given by �(x, y) = �o + �̃(x, y, t). In order

to obtain an MS for a boundary surface given as C(x, y) = b, we multiply the original MS

with (b �C(x, y))m. We write the new MS as

�BC(x, y, t) = �o + (b �C(x, y))m�̃(x, y, t), (6.1)

where m is the order of the boundary condition. For example, for the Dirichlet boundary

m = 1 and for Neumann boundary m = 2.

We use these MSs to verify the convergence of various widely used boundary condi-

tion implementations. We identify the boundary implementations that show convergence

for all the boundary shapes. We finally propose a complete second-order convergent

weakly compressible scheme that implements all the boundary conditions to simulate a

flow past an arbitrarily shaped obstacle. We solve the flow past a circular cylinder in order

to demonstrate the accuracy compared to ISPH and EDAC schemes. In the next section,

we construct MS for di↵erent boundary conditions using the method described above,

modified for SPH schemes.

145
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6.1 Manufactured solutions for BCs
The solid boundary can be straight or curved. In this work, we do not consider non-

smooth geometric features, like a corner. For corners, one requires a discontinuous MS,

and at a discontinuity, the higher-order terms fail to show the actual order of convergence.

However, the method showing second-order convergence for smooth boundary will per-

form better than other methods. We consider three types of boundary shapes viz. straight,

convex, and concave as shown in fig. 6.1. The fluid particles are represented by the blue

color, and the green color particles represent the ghost particles for which we set the prop-

erties using the MS. The particles colored in orange are used to verify a particular method.

In the domain referred to as ‘straight’, the ghost particles in orange have a constant nor-

mal. The domain referred to as ‘convex’, the boundary is a convex surface, whereas the

domain referred to as ‘concave’, the boundary is a concave surface. We note that both

convex and concave domains are identical; however, the boundary surfaces of interest are

di↵erent.

Figure 6.1 : Types of domains considered to test the convergence of solid boundary im-

plementation. The fluid particles are represented by the blue color, the par-

ticles in green represent ghost particles on which properties are set using

MS, and the particles in orange are used to test the convergence of bound-

ary implementation of interest.

We observe that the convex and concave domains have a staircase pattern at the

boundary due to the use of the Cartesian arrangement of particles to represent the bound-

ary. We use the Hybrid packing discussed in section 4.1.3, to pack the particles near both

inner and outer surfaces. In fig. 6.2, we plot the packed version of the convex and concave

domains, and we refer to these as ‘packed-convex’ and ‘packed-concave’, respectively.

In order to test the open-boundary condition implementation, we require the inlet

and outlet boundary to continuously add and remove particles from the domain, respec-

tively. Furthermore, the inlet and outlet condition requires that the flow is only along the
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Figure 6.2 : The packed version of convex and concave domains. The fluid particles are

represented by blue color, the particles in green represents ghost particles

on which properties are set using MS, and the particles in orange are used

to test the convergence of desired boundary condition implementation.

normal at the boundary. In order to satisfy these conditions, we use a 1m ⇥ 1m domain,

with an inlet and outlet on the left and right, respectively. In fig. 6.3, we show the do-

main with ghost particles representing the inflow (in green), outflow (in red), and wall (in

orange).

Figure 6.3 : The domain used for the verification of inlet and outlet boundary imple-

mentation. The blue particles represent the fluid, orange particle represent

the wall, green particles are inflow particles, and red particles are the out-

flow particles.

We take the following steps in order to construct an MS for a boundary surface

C(x, y) = b:

1. Construct a base MS such that it satisfies the general requirement of MMS (see

section 3.2).
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2. In the context of SPH, we additionally require the velocity field to be non-solenoidal

as discussed in section 3.3.

3. Modify the property of interest such that the boundary condition at C(x, y) = b is

satisfied. For example, for the no-slip boundary, only velocity needs to be modified.

4. We note that one should ensure that the MS of the property of interest is non-zero

on the boundary before the boundary condition is satisfied. For example, if we need

u · n̂ at the boundary to be zero, we must make sure that u , 0 at the boundary.

In the next sections, we use the above procedure to construct MS for Neumann pressure,

slip, no-slip, and inflow and outflow boundary conditions.

6.1.1 Neumann pressure boundary

In this boundary condition, we ensure that rp · n̂ = 0, where n̂ is normal to the

boundary surface. For the straight domain the normal n̂ = j. Therefore, we can construct

the MS given by

u(x, y) = (y � 1) sin (2⇡x) cos (2⇡y),

v(x, y) = � (y � 1) sin (2⇡y) cos (2⇡x),

p(x, y) = x2 + cos (4⇡x).

(6.2)

Figure 6.4 : Velocity and pressure contours on the straight domain in fig. 6.1 of the MS

in eq. (6.2).

In fig. 6.4, we show the contour plot of the above MS in the straight domain. In the

case of the convex domain, the normal to the surface is given by n̂ = (x�0.5)i+ (y�0.5)j.
Therefore, we can construct an MS given by
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u(x, y) = (y � 1) sin (2⇡x) cos (2⇡y),

v(x, y) = � (y � 1) sin (2⇡y) cos (2⇡x),

p(x, y) = tan�1
 
(y � 0.5)2

(x � 0.5)2

!
.

(6.3)

Figure 6.5 : Velocity and pressure contours on the convex/concave domain of the MS in

eq. (6.3).

In fig. 6.5, we show the contour plot of the above MS in the convex domain. Since,

for the concave domain, the normal remains the same, we can use the same MS since it

satisfies rp · n̂ = 0 at the surface of interest. We note that for the packed version of the

domain in fig. 6.2, we can use the same MS as used in the unpacked version as the surface

of interest is exactly the same.

6.1.2 Slip boundary condition

For the slip boundary condition, we ensure that u · n = 0 at the boundary surface.

For the straight domain, we construct the MS given by

u(x, y) = (y � 1) sin (2⇡x) cos (2⇡y) + 1,

v(x, y) = (y � 1)2 sin (2⇡y),

p(x, y) = cos (4⇡x) + cos (4⇡y).

(6.4)

In fig. 6.6, we plot the velocity and pressure contour generated by the MS in eq. (6.4).

For the convex domain the normal n̂ = (x � 0.5)i + (y � 0.5)j, therefore we construct the
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Figure 6.6 : Velocity and pressure contours on the straight domain of the MS in eq. (6.4).

MS given by

u(x, y) = (y � 0.5) sin (2⇡x) cos (2⇡y),

v(x, y) = � (x � 0.5) sin (2⇡x) cos (2⇡y),

p(x, y) = cos (4⇡x) + cos (4⇡y),

(6.5)

such that u · n̂ = 0. In fig. 6.7, we plot the velocity and pressure contour generated from

the MS in eq. (6.4). We note that since for the concave as well as packed domains, the

normal remains the same; therefore, we can use the same MS in eq. (6.5) for all these

domains.

Figure 6.7 : Velocity and pressure contours on the convex/concave domain of the MS in

eq. (6.5).
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6.1.3 No-slip boundary condition

For a no-slip boundary condition, we ensure that the velocity at the surface is zero

for a stationary wall. For the straight domain, we construct the MS given by

u(x, y, t) = (1 � y)2 e�10t sin (2⇡x) cos (2⇡y),

v(x, y, t) = � (1 � y)2 e�10t sin (2⇡y) cos (2⇡x),

p(x, y, t) = (cos (4⇡x) + cos (4⇡y)) e�10t.

(6.6)

Figure 6.8 : Velocity and pressure contours on the straight domain of the MS in eq. (6.6).

In fig. 6.8, we plot the contour plot for the velocity and pressure generated by the MS

in eq. (6.6). In order to construct an MS for the convex domain in fig. 6.1, we construct

the MS such that the velocity is zero on the inner surface of the domain, given by

u(x, y, t) =
⇣
� (x � 0.5)2 � (y � 0.5)2 + 0.0625

⌘

e�10t sin
⇣
⇡
⇣
2 (x � 0.5)2 + 2 (y � 0.5)2

⌘⌘
,

v(x, y, t) = �
⇣
� (x � 0.5)2 � (y � 0.5)2 + 0.0625

⌘

e�10t cos
⇣
⇡
⇣
2 (x � 0.5)2 + 2 (y � 0.5)2

⌘⌘
,

p(x, y, t) = (cos (4⇡x) + cos (4⇡y)) e�10t.

(6.7)

In fig. 6.9, we plot the velocity and pressure contour generated from the MS in

eq. (6.7). In order to construct the MS for the concave domain in fig. 6.1, we make the

velocity zero on the outer surfaces given by
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Figure 6.9 : Velocity and pressure contours on the convex domain of the MS in eq. (6.7).

u(x, y, t) =
⇣
� (x � 0.5)2 � (y � 0.5)2 + 0.25

⌘

e�10t sin
⇣
⇡
⇣
2 (x � 0.5)2 + 2 (y � 0.5)2

⌘⌘
,

v(x, y, t) = �
⇣
� (x � 0.5)2 � (y � 0.5)2 + 0.25

⌘

e�10t cos
⇣
⇡
⇣
2 (x � 0.5)2 + 2 (y � 0.5)2

⌘⌘
,

p(x, y, t) = (cos (4⇡x) + cos (4⇡y)) e�10t.

(6.8)

In fig. 6.10, we plot the contour for velocity and pressure generated from eq. (6.8)

for the concave domain. We note that the MS described remains the same for the corre-

sponding packed version of the domains.

Figure 6.10 : Velocity and pressure contours on the concave domain of the MS in

eq. (6.8).
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6.1.4 Inlet and outlet velocity boundary condition

At the inlet, we make sure that ru · n̂ = 0. Since the inlet is usually straight. We

consider one type of inlet with constant normal n̂ = �i similarly outlet with normal n̂ = i.
We use the MS given by

u(x, y, t) = y (y � 1) e�10t cos (2⇡y) + 1,

v(x, y, t) = �x2 (x � 1)2 e�10t sin (2⇡y),

p(x, y, t) = (cos (4⇡x) + cos (4⇡y)) e�10t.

(6.9)

Figure 6.11 : Velocity and pressure contours on the domain in fig. 6.3 of the MS in

eq. (6.9).

In fig. 6.11, we plot the velocity and pressure contour for the MS in eq. (6.9). Ad-

ditionally, we also simulate the wave passing through the inlet and outlet. We also must

satisfy the boundary condition. For the inlet, we construct the MS given by

u(x, y, t) = x2y (y � 1) e�200(x�0.1�40t)2
cos (2⇡y) + 1,

v(x, y, t) = 0.0,

p(x, y, t) = cos (4⇡x) + cos (4⇡y).

(6.10)

In fig. 6.12, we plot the velocity and pressure contour for the MS in eq. (6.10). We

construct the wave of velocity passing through the outlet given by

u(x, y, t) = (x � 1)2y (y � 1) e�200(x�0.9+40t)2
cos (2⇡y) + 1,

v(x, y, t) = 0.0,

p(x, y, t) = cos (4⇡x) + cos (4⇡y).

(6.11)

In fig. 6.13, we plot the velocity and pressure generated by the MS in eq. (6.11).
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Figure 6.12 : Velocity and pressure contours on the domain in fig. 6.3 of the MS in

eq. (6.10).

Figure 6.13 : Velocity and pressure contours on the domain in fig. 6.3 of the MS in

eq. (6.11).
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6.1.5 Inlet and outlet pressure boundary condition

At the inlet, for pressure, we make sure that rp · n̂ = 0. For the inlet as well as the

outlet, we use the MS given by

u(x, y, t) = y (y � 1) e�10t cos (2⇡y) + 1,

v(x, y, t) = �x (x � 1) e�10t sin (2⇡y),

p(x, y, t) = y (y � 1) e�10t cos (2⇡y).

(6.12)

Figure 6.14 : Velocity and pressure contours on the domain in fig. 6.3 of the MS in

eq. (6.12).

In fig. 6.14, we plot the velocity and pressure contour generated from the MS in

eq. (6.12). In order to simulate a pressure wave passing through both inlet and outlet, we

construct MSs with pressure moving with the artificial speed of sound. For the inlet, we

construct the MS given by

u(x, y, t) = y (y � 1) cos (2⇡y) + 1,

v(x, y, t) = 0.0,

p(x, y, t) = x2e�200(x�0.1�40t)2
cos (2⇡y).

(6.13)

In fig. 6.15, we plot the velocity and pressure generated from the MS in eq. (6.13).

In the case of the outlet, we construct the MS given by

u(x, y, t) = y (y � 1) cos (2⇡y) + 1,

v(x, y, t) = 0.0,

p(x, y, t) = (x � 1)2e�200(x�0.9+40t)2
cos (2⇡y).

(6.14)
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Figure 6.15 : Velocity and pressure contours on the domain in fig. 6.3 of the MS in

eq. (6.13).

Figure 6.16 : Velocity and pressure contours on the domain in fig. 6.3 of the MS in

eq. (6.14).
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In fig. 6.16, we plot the velocity and pressure due to MS in eq. (6.14). In the next

section, we use the solutions manufactured in this section to verify various boundary

condition implementations.

6.2 Verification of BC implementations
In this section, we verify the convergence of various boundary condition implementa-

tions discussed in chapter 4 using MMS. We first show the convergence of various solid

boundary condition implementations followed by the inflow and outflow boundary imple-

mentations. For all the test cases, we simulate 100 timesteps for resolutions in the range

100 ⇥ 100 to 500 ⇥ 500, and evaluate the L1 error using eq. (2.42). We set the time step

corresponding to the highest resolutions as done in section 3.3.

We use the PySPH (Ramachandran et al., 2021) framework to implement all the

methods. All the results presented in this work are reproducible and can be easily gener-

ated using the automation framework automan (Ramachandran, 2018). In the interest of

reproducibility, we provide the entire source code at https://gitlab.com/pypr/mms_

sph_bc.

6.2.1 Comparison of solid BC implementations

In this section, we verify all the solid boundary methods discussed in section 5.1.

Neumann pressure boundary condition

In this section, we apply various methods described in section 5.1 to apply the Neumann

pressure boundary condition on the orange particles shown in the domains in fig. 6.1, and

fig. 6.2. We first use the MS in eq. (6.2). The MS ensures that rp · n̂ = 0 at the boundary

of interest in the straight domain. We refer to a particular method using the corresponding

first author names. The ‘MMS’ and ‘MMS-2L’ are the cases where properties on the

solid are updated using the MS, and six layers and two layers of ghost particles are used

to represent the solid, respectively. In fig. 6.17, we plot the L1 error in the pressure and

velocity after 100 timesteps.

The ‘MMS-2L’ plot shows that the L-IPST-C scheme converges even when two

layers of solid particles are employed for a straight boundary. In the case of the straight

domain, all the methods considered in this work are second-order convergent except the

method proposed by Fourtakas et al. (2019), where a virtual stencil is used to complete

the support of the particles. However, the rate of convergence is similar to as reported in

Fourtakas et al. (2019).

https://gitlab.com/pypr/mms_sph_bc
https://gitlab.com/pypr/mms_sph_bc
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Figure 6.17 : L1 error in pressure and velocity after 100 time steps di↵erent Neumann

pressure boundary implementations in the straight domain in fig. 6.1.

We also test all the methods on the convex and concave domains. In order to verify,

we use the MS in eq. (6.3) which satisfies the boundary condition for the surface of interest

in both domains. In fig. 6.18, and fig. 6.19, we plot the L1 error for pressure and velocity

for the convex and concave domains, respectively.

Figure 6.18 : L1 error in pressure and velocity after 100 time steps di↵erent Neumann

pressure boundary implementations in the convex domain in fig. 6.1.

We observe that the method proposed by Hashemi et al. (2012) diverges since only a

single layer of particles are used to represent the solid, which is insu�cient even for cor-

rected gradient computation. However, the method proposed by Marongiu et al. (2007)
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Figure 6.19 : L1 error in pressure and velocity after 100 time steps di↵erent Neumann

pressure boundary implementations in the concave domain in fig. 6.1.

shows first-order convergence. Moreover, the rate of convergence is non-monotonous

for a convex boundary. The reason behind a lower order of convergence is the use of

a single layer of particles and zeroth-order interpolation on the virtual particles, which

are further used in the fifth-order finite di↵erence interpolation. The method proposed by

Fourtakas et al. (2019) shows first-order convergence in pressure and 1.5 in velocity, as

expected. The convergence of the method proposed by Adami et al. (2012), and ‘MMS-

2L’ are very close to 1.5. The ‘MMS-2L’ has a slight decrease in convergence compared

to ‘MMS’, which shows that the minimum number of layers required for an accurate Neu-

mann boundary is higher for a curved surface compared to a straight boundary. Clearly,

the method proposed by Marrone et al. (2011) is second-order convergent.

In order to remove the e↵ect of jagged edges on the convergence of the boundary

condition implementations, we performed the numerical experiment on the packed do-

main viz. packed-convex and packed concave as shown in fig. 6.2. Since the boundary

surfaces are the same, we use the same MS in eq. (6.3). In fig. 6.20, and fig. 6.21, we plot

the L1 error for pressure and velocity for both domains.

We observe that all the methods show a better rate of convergence. We note that

unlike earlier in the Hashemi method, errors do not increase. Furthermore, the Marongiu

method shows an almost constant rate of convergence for a convex domain. The rate

of convergence increases for all the methods compared to an unpacked domain. The

convergence of the method proposed by Colagrossi et al. (2003) increases by a large

amount since the particles after mirroring have good distribution. The method by Marrone
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Figure 6.20 : L1 error in pressure and velocity after 100 time steps di↵erent Neu-

mann pressure boundary implementations in the packed-convex domain

in fig. 6.2.

Figure 6.21 : L1 error in pressure and velocity after 100 time steps di↵erent Neu-

mann pressure boundary implementations in the packed-concave domain

in fig. 6.2.



6.2 Verification of BC implementations 161

et al. (2011) and Colagrossi et al. (2003) overlaps and shows second-order convergence.

This test also demonstrates the e↵ectiveness of packing for curved surfaces.

Slip boundary condition

In this section, we test various slip boundary condition implementations discussed in sec-

tion 5.1. In order to test these methods, we use all the di↵erent domains considered in the

previous results. For the straight domain, we use the MS in eq. (6.4). In order to construct

this MS, we ensure that u · n̂ = 0 at the boundary. In fig. 6.22, we plot the L1 error in

pressure and velocity after 100 timesteps. Clearly, all the methods show second-order

convergence. In general, the slip boundary condition is not a realistic boundary condition,

and it is usually used to remove the e↵ect of walls not a↵ecting the flow. However, to

complete the discussion, we test these methods in other domains.

Figure 6.22 : L1 error in pressure and velocity after 100 time steps for di↵erent slip

boundary implementations in straight domain in fig. 6.1.

We construct the MS for convex and concave domains in eq. (6.5) that satisfies u·n̂ =
0 at respective boundary surfaces of interest. In fig. 6.23 and fig. 6.24, we plot the L1 error

for pressure and velocity in convex and concave domains after 100 timesteps, respectively.

Clearly, the method proposed by Colagrossi et al. (2003) diverges for higher resolutions.

The method proposed by Adami et al. (2012) shows convergence rate close to 1.6 whereas

the method by Marrone et al. (2011) is very close to second-order convergence.

We use the same MS for the packed-convex and packed-concave domains. In

fig. 6.25 and fig. 6.26, we plot the L1 error for pressure and velocity for packed-convex

and packed-concave domains after 100 timesteps, respectively. As expected, The order
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Figure 6.23 : L1 error in pressure and velocity after 100 time steps for di↵erent slip

boundary implementations in the convex domain in fig. 6.1.

Figure 6.24 : L1 error in pressure and velocity after 100 time steps for di↵erent slip

boundary implementations in the concave domain in fig. 6.1.
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of convergence is improved. In the packed domain, the convergence for the method by

Adami et al. (2012), and Marrone et al. (2011) shows second-order convergence. The

method proposed by Colagrossi et al. (2003) converges for lower resolutions in the case

of the packed-convex domain but diverges in the case of the packed-concave domain. This

shows that mirroring the fluid particles for a curved surface does not result in a convergent

boundary condition.

Figure 6.25 : L1 error in pressure and velocity after 100 time steps for di↵erent slip

boundary implementations in the packed-convex domain in fig. 6.2.

Figure 6.26 : L1 error in pressure and velocity after 100 time steps for di↵erent slip

boundary implementations in the packed-concave domain in fig. 6.2.
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No-slip boundary condition

In this section, we test di↵erent no-slip boundary implementations discussed in section 5.1

using the domains used in the previous section. In all the no-slip boundary condition

implementations, we apply no-penetration along with the no-slip boundary. In order to

construct an MS for no-slip boundary condition, we satisfy u = 0 at the boundary. For

the straight domain, we use the MS in eq. (6.6). In fig. 6.27, we plot the L1 error for

pressure and velocity in the domain after 100 timesteps. Clearly, all the methods show a

convergence rate very close to second-order.

Figure 6.27 : L1 error in pressure and velocity after 100 time steps for di↵erent no-slip

boundary implementations in the straight domain in fig. 6.1.

Generally, we find that objects on which we intend to apply no-slip boundary are

curved. Therefore, we simulate all the methods on the domains having curved surfaces.

For the convex domain, we use the MS in eq. (6.7) whereas, for the concave domain, we

use eq. (6.8). In fig. 6.28 and fig. 6.29, we plot the L1 error in pressure and velocity for

convex and concave domains, respectively. Clearly, the method proposed by Hashemi

et al. (2012) diverges for a curved surface. The errors in the solutions are more in the

concave domain compared to the convex domain. The method by Randles et al. (1996),

Esmaili Sikarudi et al. (2016), and Adami et al. (2012) shows first-order convergence.

Whereas methods by Colagrossi et al. (2003) and Marrone et al. (2011) show close to

1.5. Some methods like Takeda et al. (1994) cannot be applied on the jagged boundary

as some particles may lie on the surface, which may result in zero in the denominator of

eq. (5.7).
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Figure 6.28 : L1 error in pressure and velocity after 100 time steps for di↵erent no-slip

boundary implementations in the convex domain in fig. 6.1.

Figure 6.29 : L1 error in pressure and velocity after 100 time steps for di↵erent no-slip

boundary implementations in the concave domain in fig. 6.1.
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Similar to other tests, we use the packed version of convex and concave domains to

test the convergence of the methods on packed domains. We use the MS in eq. (6.7), and

eq. (6.8) for the packed-convex and packed-concave domains, respectively. In the figure

fig. 6.30, and fig. 6.31, we plot the L1 error in pressure and velocity for packed-convex

and packed-concave domains, respectively. As expected, the convergence is improved.

The method by Adami et al. (2012) does not show any convergence due to zero-order

interpolation used on the ghost particles. Method by Takeda et al. (1994), Hashemi et al.

(2012), Randles et al. (1996), and Esmaili Sikarudi et al. (2016) shows close to first-order

convergence. Clearly, the method by Marrone et al. (2011) shows convergence close to

the method when MS is used on the ghost particles. Further, the method of Colagrossi

et al. (2003) also shows good convergence; however, the error compared to Marrone et al.

(2011) method is 2 order of magnitude higher. In the case of the packed-concave domain

in fig. 6.31, the order of convergence shown by all methods is lower compared to the

packed-convex domain results.

Figure 6.30 : L1 error in pressure and velocity after 100 time steps for di↵erent no-slip

boundary implementations in the packed-convex domain in fig. 6.2. Note

that the Marrone plot overlaps the plot of MMS.

In order to summarize the results, since the straight and convex domain shows better

results compared to the concave domain, we consider the results for a concave domain

only. Furthermore, we compile results for a packed domain only since the packed do-

mains are preferred over the unpacked ones. In the case of the no-slip and slip boundary,

we focus on the convergence of velocity, and in the case of the Neumann pressure, we

focus only on the convergence of pressure. In table 6.1, we tabulate the error at the high-

est resolution, i.e., �x = 1/500, and the approximate order of convergence for all the
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Figure 6.31 : L1 error in pressure and velocity after 100 time steps for di↵erent no-slip

boundary implementations in the packed-concave domain in fig. 6.2. Note

that Marrone results overlaps the results of MMS.

Method Neumann Pressure Slip No-Slip

Adami (1.17 ⇥ 10�5)2.00 (1.82 ⇥ 10�5)1.95 (5.26 ⇥ 10�5)0.09

Colagrossi (1.18 ⇥ 10�5)2.00 (1.34 ⇥ 10�3)0.19 (7.47 ⇥ 10�5)1.52

Esmaili - - (2.54 ⇥ 10�3)0.55

Fourtakas (2.07 ⇥ 10�5)1.66 - -

Hashemi (4.39 ⇥ 10�3)0.47 - (2.11 ⇥ 10�3)0.72

Marongiu (1.14 ⇥ 10�3)0.63 - -

Marrone (1.15 ⇥ 10�5)2.00 (1.58 ⇥ 10�5)1.97 (1.00 ⇥ 10�6)1.35

Randles - - (2.91 ⇥ 10�3)0.62

Takeda - - (8.63 ⇥ 10�4)0.86

Table 6.1 : Table showing the summary of the error (in brackets) at the resolution 500⇥
500 and order of convergence of various boundary condition methods in the

packed-concave domain.
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boundary conditions and methods. Clearly, in the case of the Neumann pressure bound-

ary condition, Adami, Colagrossi, and Marrone converges well. In the case of the slip

boundary conditon, only the Adami and Marrone methods work. Whereas in the case of

the no-slip boundary, only Colagrossi and Marrone method show reasonable convergence.

Clearly, the Marrone method is able to reach the lowest error as well as show convergence

for all the types of boundary conditions.

6.2.2 Comparison of open BC implementations

In this section, we test various inlet and outlet boundary condition implementations

discussed in section 5.2.

Inlet boundary

In order to test the inlet velocity boundary condition, we use the MS in eq. (6.9). In

fig. 6.32, we plot the L1 error in pressure and velocity after 100 timesteps for all the ve-

locity inflow boundary implementations. We test all the methods discussed in section 5.2

viz. mirror, simple-mirror, and hybrid. We observe that both mirror and simple-mirror

perform well for a velocity inlet boundary condition. Whereas the hybrid is bounded by

the limiting error in both pressure and velocity. In the hybrid method, as discussed in

section 5.2, the mean flow velocity of the inflow particles does not change and always

prescribed. Moreover, any wave coming from the fluid is extrapolated in x-direction and

does not a↵ect the y-direction velocity causing a limiting error proportional to the speed

of sound. An error estimation can be done in the future to determine the order of error

terms.

In order to test the pressure inflow boundary implementation, we use the MS in

eq. (6.12). In fig. 6.33, we plot the L1 error in pressure and velocity after 100 timesteps for

all the velocity inflow boundary implementations. Clearly, the boundary implementation

for a pressure inflow boundary is second-order accurate for all the methods. In the case

of the hybrid method, a slight deviation in the convergence can be seen.

In WCSPH schemes, due to weakly compressible assumption, waves travel with a

speed of artificial velocity of sound. We use the MS to simulate a wave passing out of the

inlet. These kinds of waves are encountered when a jump start is performed on a wind

tunnel kind of simulation. We simulate the problem for 500 iterations in order to allow

the wave to completely pass through the inlet/outlet. We use the MS in eq. (6.10) for the

inlet velocity wave. In fig. 6.34, we plot the L1 error in pressure and velocity for all the

methods. Clearly, the hybrid method also shows second-order convergence along with

other methods.
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Figure 6.32 : L1 error in pressure and velocity after 100 time steps for di↵erent inlet

velocity boundary implementations in the domain in fig. 6.3.

Figure 6.33 : L1 error in pressure and velocity after 100 time steps for di↵erent inlet

pressure boundary implementations in the domain in fig. 6.3.
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Figure 6.34 : L1 error in pressure and velocity after 500 time steps for di↵erent inlet

velocity wave going upstream boundary implementations in the domain in

fig. 6.3.

Figure 6.35 : L1 error in pressure and velocity after 500 time steps for di↵erent inlet

pressure wave going upstream boundary implementations in the domain

in fig. 6.3.
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In order to simulate a pressure wave going out of the inlet, we use the MS in

eq. (6.13). In fig. 6.35, we plot the L1 error in pressure and velocity for all the meth-

ods. The mirror method shows a slight increase in error for higher resolutions. The

simple-mirror remains at the same level of error compared to the hybrid method, which

shows second-order convergence.

Outlet boundary

The outflow is di↵erent compared to the inlet, as we usually do not have any information

about the ghost particles in these regions. In order to test the outflow velocity boundary

condition, we use the MS in eq. (6.9). In fig. 6.36, we plot the L1 error in pressure

and velocity after 100 timesteps for all the velocity outflow boundary implementations.

The do-nothing and the hybrid boundary are both bounded by a limiting error which

is proportional to the speed of sound. As before, both mirror and simple-mirror show

second-order convergence for velocity outlet boundary condition.

Figure 6.36 : L1 error in pressure and velocity after 100 time steps for di↵erent outlet

velocity boundary implementations in the domain in fig. 6.3.

In order to test the pressure outflow boundary implementation, we use the MS in

eq. (6.12). In fig. 6.37, we plot the L1 error in pressure and velocity after 100 timesteps for

all the velocity outflow boundary implementation. Clearly, all the methods show second-

order convergence.

To investigate the behavior of the outlet boundary implementation under the influ-

ence of a passing wave, we use the MS in eq. (6.14) and eq. (6.11) for outlet pressure and

outlet velocity boundary implementations, respectively. In fig. 6.38, and fig. 6.39, we plot
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Figure 6.37 : L1 error in pressure and velocity after 100 time steps for di↵erent outlet

pressure boundary implementations in the domain in fig. 6.3.

Figure 6.38 : L1 error in pressure and velocity after 500 time steps for di↵erent outlet

velocity wave going downstream boundary implementations in the domain

in fig. 6.3.
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Figure 6.39 : L1 error in pressure and velocity after 500 time steps for di↵erent outlet

pressure boundary wave going downstream implementations in the do-

main in fig. 6.3.

Method Velocity in Pressure in

Hybrid (2.87 ⇥ 10�6) 2.00 (5.66 ⇥ 10�7) 2.02

Mirror (2.84 ⇥ 10�6) 1.97 (1.71 ⇥ 10�6) 1.38

Simple Mirror (2.93 ⇥ 10�6) 1.98 (5.64 ⇥ 10�7) 1.81

Table 6.2 : Summary of results for the wave traveling upstream out of the inlet for all

the methods. Error at the highest resolution is shown in brackets.

the L1 error for pressure and velocity after 500 timesteps for both MSs. In the case of the

velocity wave, all the methods show second-order convergence. However, in the case of

the pressure wave in fig. 6.39, the mirror and simple-mirror method diverges. This shows

that the mirror and simple-mirror methods are not truly non-reflecting and are unable to

pass a pressure wave. These results support the finding in the previous chapter, where a

short domain with the mirror outlet was found to be unstable.

In order to summarize the results for the open boundary conditions, we consider

only the results for the traveling wave since, in WCSPH, it is important that the waves

that are generated must be allowed to pass through the inlet/outlet without a↵ecting the

flow. In the case of a velocity wave, we focus on errors in velocity, whereas in the case

of a pressure wave, we focus on errors in pressure. In table 6.2 and table 6.3, we tabulate

the error for the highest resolution and the approximate order of convergence for all the

methods simulating traveling wave MS. Clearly, the mirror method shows a significant

decrease in order of convergence in the case of the pressure wave moving upstream. In
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Method Velocity out Pressure out

Do-nothing (2.80 ⇥ 10�6) 2.00 (6.08 ⇥ 10�7) 2.00

Hybrid (3.05 ⇥ 10�6) 1.99 (6.05 ⇥ 10�7) 2.00

Mirror (2.97 ⇥ 10�6) 1.97 (1.01 ⇥ 10�3) -3.63

Simple Mirror (2.86 ⇥ 10�6) 1.97 (5.34 ⇥ 10�4) -4.21

Table 6.3 : Summary of results for the wave traveling downstream out of the outlet for

all the methods. Error at the highest resolution is shown in brackets.

the case of the wave traveling downstream, both mirror and simple-mirror diverge. The

hybrid method is applicable and converges for both scenarios.

6.3 Performance comparison
In this section, we compare the performance of three solid boundary condition imple-

mentations, viz. Marrone, Colagrossi, and Adami. For this test case, we use a 10-core,

dual-socket Intel(R) Xeon(R) CPU E5-2650 v3 processor CPU. In the context of com-

plexity, the Adami method requires only one loop to extrapolate properties from fluid,

whereas the Colagrossi method requires the creation and deletion of particles in every

timestep. In the case of the Marrone method, one needs to solve an additional 4⇥4 matrix

for each particle in the solid boundary, excluding the extrapolation step.

In fig. 6.40, we plot the time taken versus the no of parallel computing threads for

100 timesteps for a 100 ⇥ 100 domain. Clearly, the time taken by the methods are very

close despite the fact that di↵erent amount of computations are required. This is due to

a very low number of solid particles compared to fluid particles. In the present case, the

fluid particles are 10000, whereas the solid particles on which the boundary condition is

implemented are 600. Therefore, we demonstrated that a higher-order boundary imple-

mentation does not a↵ect the performance of the code. Furthermore, these results can be

easily extrapolated to open-boundary implementations. In the next section, we propose

an algorithm to obtain a convergent solver for a problem containing inlet, outlet, and solid

boundaries.

6.4 Complete second-order convergent SPH scheme
In the previous section, we have shown that some of the boundary condition imple-

mentations are convergent using the MMS. In chapter 2 and chapter 3, we have used

verification methods to procedurally obtain a second-order accurate WCSPH scheme
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Figure 6.40 : The time taken with the increase in the number of threads for di↵erent

solid boundary conditions.

without boundary. In this section, we extend our method to propose a second-

order convergent scheme with second-order convergent boundary implementations. For

brevity, we use short names to represent an equation in the algorithm. For example,

EvaluateVelocityOnGhost(dest, sources) can be written formally as shown in algo-

rithm 6.

Algorithm 6: Psuedo-code of equation EvaluateVelocityOnGhost.

for i in dest do
ui = 0;

for j in sources do
ui = ui + uj! jWi j;

In algorithm 6, i is the loop index, and j is over all the neighbors of ith element. We

note that all the extrapolation/equation require a corrected kernel/gradient and is implied.

Consider a fluid domain, the inlet continuously feeding particles to the fluid, and

the outlet continuously consuming particles from the fluid and an arbitrarily-shaped solid

body. In algorithm 7, we show the algorithm for a convergent time-accurate WCSPH

scheme to simulate the flow for a given initial condition. We denote all the fluid particles
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by F, all solid particles by S, and all inlet/outlet particles by IO. All the virtual particles

required for solid particles are denoted by M(S).

Algorithm 7: A Second-order convergent scheme.

while t < t f inal do
for i in F do
EvaluatePressure(dest=i, sources=�);

for i in IO do
EvaluateVelocityOnInletOutlet(dest=i, sources=F);

EvaluatePressureOnInletOutlet(dest=i, sources=F);

for i in M(S) do
EvaluateVelocityOnGhost(dest=i, sources=F [ IO);

EvaluatePressureOnGhost(dest=i, sources=F [ IO);

for i in S do
EvaluateSlipVelocityOnSolidFromGhost(dest=i, sources=�);

EvaluateNoSlipVelocityOnSolidFromGhost(dest=i, sources=�);

EvaluatePressureOnSolidFromGhost(dest=i, sources=�);

for i in F [ S do
ComputeVelocityGradient(dest=i, sources=F [ IO);

# use extrapolated no slip velocity for solid

ComputeVelocityGradientSolid(dest=i, sources=S);

for i in F do
ContinuityEquation(dest=i, sources=F [ IO);

# use extrapolated slip velocity for solid

ContinuityEquationSolid(dest=i, sources=S);

PressureForces(dest=i, sources=F [ S [ IO);

ComputeViscousForces(dest=i, sources=F [ IO);

for i in F [ IO do
Integrate(dest=i, sources=�)

The algorithm starts with the evaluation of pressure from the equation of state

given by eq. (2.27) in EvaluatePressure. In the next step, we evaluate pressure and

velocity on the inlet and outlet regions using the hybrid method in section 4.1.3 in

EvaluatePressureOnInletOutlet, and EvaluateVelocityOnInletOutlet, respectively.

We note that the inlet and outlet properties are updated, and then these are used as the
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source for solid properties in case of overlaps. We use the method by Marrone et al.

(2011) to evaluate the properties of solid particles. We first evaluate accurate first-order

values on virtual particles in EvaluateVelocityOnGhost and EvaluatePressureOnGhost,

and then use these values to implement pressure, slip, and no-slip boundary conditions

in EvaluatePressureOnSolidFromGhost, EvaluateSlipVelocityOnSolidFromGhost,

EvaluateNoSlipVelocityOnSolidFromGhost, respectively. In order to obtain accu-

rate second-order viscous operator, we require the velocity gradient on each particle,

which is computed in ComputeVelocityGradient, and ComputeVelocityGradientSolid.

We note that we consider no-slip extrapolated velocity for gradient computation.

Finally, we evaluate accelerations due to various forces in ContinuityEquation,

ContinuityEquationSolid, PressureForces, and ComputeViscousForces. We note that,

in the evaluation of the continuity equation, we use extrapolated slip velocity on solids

(Muta et al., 2020). We use the computed and extrapolated properties to integrate the par-

ticle properties and position. We use IPST to make the particles more uniform and update

the properties using an accurate first-order correction. The IPST can be performed after

every few timesteps. In our simulations, we perform shifting every 10 iterations.

10D 

10D 
D 

2.5D 

inlet

 

fluid

outlet

wall

Figure 6.41 : Description of the domain of the flow fast cylinder problem.

In order to show the accuracy achieved by the proposed algorithm, we solve the flow

past a circular cylinder. We consider the domain shown in fig. 6.41. We consider inflow

velocity U = 1m/s, Reynolds number Re = 200, and a cylinder of diameter D = 2m. We

set the dynamic viscosity ⌫ = UD/Re. We discretize the domain with �x = D/40. The
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total particles in the domain are approximately 0.18M. We simulate the problem using

the algorithm 7 with the artificial speed of sound co = 10m/s for 200sec. We set the initial

pressure po = ⇢oc2
o, density ⇢o = 1.0, and velocity uo = Uî. We add an additional density

damping proposed by Antuono et al. (2010) to the continuity equation with � = 0.0625, to

reduce high-frequency pressure oscillations (see the variations of SOC schemes proposed

in section 2.3.5).

Figure 6.42 : Average pressure at t = 100sec.

In fig. 6.42 and fig. 6.43, we plot the average pressure and velocity magnitude at

t = 100sec, respectively. We compute the average pressure (pavg)i =
P

pj/Nnbr, where

the sum is taken over all the Nnbr neighbors of the ith particle. Clearly, the solution is free

from any high-frequency pressure oscillations. Furthermore, the pressure in the domain

remains in the vicinity of the reference pressure ⇢oc2
o = 100Pa for the entire simulation.

In order to compute the coe�cient of lift cl and drag cd for the cylinder, the force on the

solid cylinder Fsolid is determined by solving the momentum equation given by

Fsolid

msolid
= �1

⇢
rp + ⌫r2u, (6.15)

where msolid is the mass of the solid particles. We use the SOC discretization for all the

terms in the RHS of eq. (6.15) as discussed in section 2.3.3.

In fig. 6.44, we plot the variation of cd and cl with time for the present method with

results of the EDAC scheme (Ramachandran et al., 2019) and the SISPH scheme (Muta et

al., 2020). We obtain the mean cd value of 1.65 and cl value of 0.74, after the shedding is

established. These values are closer to SISPH values, where a pressure Poisson equation
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Figure 6.43 : Velocity magnitude at t = 100sec.

Figure 6.44 : cd and cl variation for the flow past a cylinder with time.
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is solved to obtain pressure. Furthermore, both drag and lift coe�cient values are free

from disturbances. This example successfully demonstrates that the proposed algorithm

works for a problem where all types of boundaries discussed in this work are present.

6.5 Summary
In this chapter, we use the MMS and construct MS for specific boundary conditions and

domains. For a solid boundary, we verify methods for Neumann pressure, slip, and no-

slip boundary conditions. In order to cover all the aspects of arbitrary geometries, we

test the convergence on a straight, convex, and concave boundary. In the case of open

boundaries, we consider a square domain with inlet and outlet regions simulating a wind

tunnel. We manufacture solutions for inlets and outlets for both Neumann pressure and

velocity. Additionally, we manufacture solutions depicting waves of pressure and velocity

passing through inlet/outlet.

We show that the method proposed by Marrone et al. (2011) is convergent for all

kinds of domain and boundary conditions on a solid boundary. Some other methods like

Adami et al. (2012) and Colagrossi et al. (2003) are second-order convergent in inviscid

flow and packed domains. Almost all boundary implementations are second-order on a

straight boundary. In the case of open boundaries, the mirror and simple-mirror work

well in the absence of a wave traveling through the boundary. The hybrid and do-nothing

boundaries are bounded by the O(M2), where M is the Mach number of the flow. How-

ever, in the case of a wave traveling through the domain, the mirror and simple-mirror

method diverges, and hybrid and do-nothing methods converge with second-order accu-

racy. Finally, we discuss an algorithm to apply these boundary conditions in order to get

a convergent solver. We use the method proposed by Marrone et al. (2011) for solids and

the hybrid method for inlet and outlet boundaries. We demonstrate the accuracy of the

proposed algorithm by solving the flow past a circular cylinder. We achieve an accuracy

close to the results obtained using incompressible SPH solvers.
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Conclusions and future work

In this work, we have addressed two of the grand-challenge problems in SPH (Vacon-

dio et al., 2020). Firstly, we investigated the convergence of various existing weakly-

compressible SPH schemes and proposed a second-order convergent scheme. Secondly,

to the best of our knowledge, for the first time, we have identified convergent boundary

condition implementations for SPH. We use the convergent boundary condition imple-

mentation and the scheme and propose a complete algorithm to simulate a flow past a

circular cylinder problem. We list our contributions from this work as follows:

1. We systematically study various aspects that a↵ect the convergence of a WCSPH

scheme. We first compare various smoothing kernels that are widely used in SPH

literature and select the best in terms of convergence and accuracy. We then use

this kernel to compare di↵erent SPH formulations for gradient, divergence, and

Laplacian approximation. We contrast the computational time, convergence, and

conservation properties in all our comparisons.

2. We proposed several second-order convergent schemes. In order to achieve this, we

propose four essential requirements.

(a) The density must be treated as a transport property.

(b) The integration volume must be evaluated using the particle density and mass

of the particle.

(c) The operators must be discretized using SOC discretizations.

(d) PST must be used in order to maintain a uniform particle distribution, which

ensures accurate approximations.

3. We compare the convergence of the proposed scheme and various existing WCSPH

schemes by solving the Taylor-Green vortex problem. To the best of our knowl-
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edge, we show the second-order convergence of a Lagrangian WCSPH scheme for

the first time in SPH literature. We also show the conservation behavior of the pro-

posed scheme and compare it with some of the widely used existing schemes. We

observed that the proposed scheme is second-order convergent up to very high res-

olutions. However, the error is dominated by O(M2), where M is the Mach number

of the flow, at high resolutions due to weakly-compressible assumption. We demon-

strate the e↵ect of the change of Mach number on the convergence and recommend

using a high artificial speed of sound.

4. We propose variations of the SOC scheme. These variations are SOC versions

of various existing weakly-compressible models. For example, transport velocity,

EDAC, and Eulerian SPH. We show the convergence of these schemes by solv-

ing the Taylor-Green problem and also compare the conservation property of these

variations.

5. We, to the best of our knowledge, for the first time, demonstrated the use of MMS to

verify the convergence of the WCSPH scheme. We proposed a procedure to apply

MMS to Lagrangian-based schemes. We suggested the initial particle distribution

requirements and the minimum number of iterations required for a convergence

study. We show that MMS is applicable to any shape of the domain and independent

of the computational model used, for example, the use of transport velocity. This

method takes far less time to produce the convergence plot compared to the method

of exact solutions.

6. We show the application of MMS to obtain the convergence of various variations of

the proposed scheme. We demonstrated the use of the MMS to obtain convergence

at extreme resolutions, in 3D domains, and with fields of high-frequency variations.

We also show that MMS can be used to find coding mistakes in an implementation

or to identify terms causing the lack of convergence.

7. In order to apply solid boundary conditions accurately, one requires to capture the

solid boundary features. We propose a hybrid technique to initialize the particles

for both fluid and arbitrarily shaped solids simultaneously. Unlike existing meth-

ods, our method redistributes the particles in the domain such that the particles are

smoothly aligned along the boundary of the solid object, maintaining a uniform par-

ticle density simultaneously. Our algorithm can be easily applied to any meshless

method package.
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8. As discussed before, the correct application of the boundary condition is a grand

challenge. One of the reasons was the inability to verify the convergence of the

boundary condition implementations. We, to the best of our knowledge, for the

first time, verify the convergence of boundary condition implementation in SPH.

We use the MMS to verify the convergence of Neumann pressure, slip, and no-

slip, and inflow and outflow boundary conditions on straight, concave, and convex

boundaries. In order to verify the boundary condition implementations, we man-

ufacture solutions for di↵erent shaped domains which are applicable to a general

Lagrangian-based codes.

9. We propose a complete second-order convergent scheme with solid and open

boundaries that enables us to simulate realistic problems to obtain highly accurate

solutions. We demonstrate the application of the algorithm by solving a flow past a

circular cylinder problem. We compare the results with that of EDAC and SISPH

and show that our results have much less noise.

10. All the results presented in this work are reproducible, and the source code is open-

source.

It bears emphasis that all the work is implemented using an open-source tool PySPH

(Ramachandran et al., 2021), and the results can be reproduced using automan (Ra-

machandran, 2018), an automation framework. Furthermore, all the work is freely avail-

able to reuse in various repositories at https://gitlab.com/pypr.

7.1 Future work
In this section, we list some directions for research in the future as follows:

1. We observe that the SPH discretization of operators involved in the momentum

equation is either convergent or conservative. A convergent and conservative dis-

cretization of the momentum equation is one possible avenue for research.

2. The divergence of divergence-free fields is zero when the particles are arranged in a

Cartesian grid. However, the error goes to a O(10�4) for packed particle distribution.

Methods to remove this error due to the particle distribution can be investigated in

the future.

3. The application of kernel gradient correction in order to improve the convergence

of the scheme a↵ects the computation time by a factor of two. In order to speed

https://gitlab.com/pypr
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up the process, one can use an adaptive formulation, recently proposed by Muta

et al. (2022). However, a second-order convergent adaptive SPH formulation is not

known. In the future, we would like to use MMS to identify the root cause of the

lack of convergence present in the current schemes and construct a second-order

version of adaptive schemes. This would greatly motivate one to use the second-

order accurate schemes in practical simulations.

4. Since the application of the kernel correction is essential for second-order conver-

gent scheme, e�cient ways to implement these corrections could be investigated in

the future.

5. The SPH method is widely used to solve free-surface and interfacial flows. How-

ever, a second-order convergent implementation to apply these boundary conditions

is not known. In the future, we would like to use MMS to identify and possibly

construct a second-order convergent boundary implementation for free-surface and

interfacial flows.

6. In the case of particle packing, we observed that in three dimensions, the parti-

cles placed on a rectangular grid do not have the lowest potential. However, this

configuration is widely used to simulate flows in three dimensions. In the future,

we would like to explore the e↵ect of using a stable configuration like hexagonal

packing to carry out simulations.
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Supporting material

A.1 Skew-adjoint pressure gradient and velocity
divergence operators

In this section, we show that the formulation for velocity divergence in eq. (1.20) and

pressure gradient in eq. (1.24) are skew-adjoint. The inner product of the pressure gradient

formulation and velocity is given by

h< rp >,ui =
X

j

(pj + pi)rWi j · ui! j

= �
X

j

(pj + pi)rWi j · u j! j

=
1
2

X

j

(pj + pi)rWi j · (ui � u j)! j,

(A.1)

where the second step is performed by exchanging the dummy scripts and the third step

is the average of the first two steps. Similarly, the inner product of the pressure and

divergence of the velocity is given by

(p, < r · u >) = �
X

j

pirWi j · (ui � u j)! j

= �
X

j

p jrWi j · (ui � u j)! j

= �1
2

X

j

(pi + pj)rWi j · (ui � u j)! j.

(A.2)

Therefore,

h< rp >,ui = � (p, < r · u >) . (A.3)
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A.2 Instabilities inherent to the smoothing kernel
In this section, we discuss two well-known instabilities inherent to the smoothing kernels,

viz. pairing and tensile instability. Swegle et al. (1995) observed that in the presence of

tensile stress on a particle lattice, the particles rapidly clump together to create a hole.

They propose that the unstable growth can be controlled if

W 00T < 0, (A.4)

where W 00 is the second derivative of the smoothing kernel and T is the total stress. There-

fore, the time step must be set accordingly to achieve stability. Cubic spline kernels were

found to have tensile stabilities when the smoothing length is kept equal to the particle

spacing.

These tensile instabilities grow and particles pair up. This reduces the number of

e↵ective neighbors for a given particle and makes the simulation inaccurate. This issue is

called pairing instability. Dehnen et al. (2012) proposed that the smoothing kernel with

negative Fourier transform for some k wavenumber will inevitably trigger pairing instabil-

ity. The Wendland class of kernels was found to be free from pairing instability. However,

the approach of particle shifting either explicitly (in L-IPST-C scheme) or via transport

velocity (in TV-C scheme) eliminates these instabilities for all types of smoothing kernels

considered in this work.

A.3 Derivation of kernel gradient correction
In this section, we derive the correction matrices discussed in chapter 1. We use the

discrete form of the Taylor-series expansion of a function f at x j about xi, given by

f j = fi � (xi j · r) fi +
1
2

(xi j · r)2 fi + O(|xi j|3), (A.5)

where f j = f (x j). In the following sections, we derive the di↵erent kernel gradient cor-

rections.

A.3.1 Correction by Bonet et al. (1999)

In this section, we derive the kernel gradient correction proposed by Bonet et al.

(1999). For a smoothing kernel to approximate the gradient with first-order consistency,

it must satisfy X

j

(x j � xi) ⌦ rW̃i j! j = I,
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where rW̃i j = BirWi j is the corrected kernel gradient and Bi is the correction matrix.

Therefore, we have 1

X

j

(x j � xi) ⌦ BirWi j! j = I

=)
2
6666664
X

j

(x j � xi) ⌦ rWi j! j

3
7777775 BT

i = I.

From the above equation, the correction matrix is evaluated as

Bi =

2
6666664
X

j

rWi j ⌦ (x j � xi)! j

3
7777775

�1

.

A.3.2 Correction by Liu et al. (2006)

Liu et al. (2006) use the Taylor-series expansion of a function in eq. (A.5). Taking

the discrete convolution of the expansion with the kernel Wi j and its gradient rWi j, we

get X

j

f jWi j! j =
X

j

fiWi j! j �
X

j

(xi j · r) fiWi j! j, (A.6)

ignoring the higher-order terms, and
X

j

f jrWi j! j =
X

j

firWi j! j �
X

j

(xi j · r) firWi j! j. (A.7)

From the eq. (A.6) and eq. (A.7), we get
2
6666664

P
j f jWi j! j

P
j f jrWi j! j

3
7777775 =

2
6666664

P
j Wi j! j

P
j x jiWi j! j

P
j rWi j! j

P
j rWi j ⌦ x ji! j

3
7777775

2
6666664

fi

r fi

3
7777775 .

Considering, the correction kernel W̃i j and kernel gradient rW̃i j, we get
2
6666664

P
j f jWi j! j

P
j f jrWi j! j

3
7777775 =

2
6666664

P
j Wi j! j

P
j x jiWi j! j

P
j rWi j! j

P
j rWi j ⌦ x ji! j

3
7777775

2
6666664

P
j f jW̃i j! j

P
j f jrW̃i j! j

3
7777775 .

Therefore, we have
2
6666664

Wi j

rWi j

3
7777775 =

2
6666664

P
j Wi j! j

P
j x jiWi j! j

P
j rWi j! j

P
j rWi j ⌦ x ji! j

3
7777775

2
6666664

W̃i j

rW̃i j

3
7777775 .

Therefore, the correction matrix is given by
2
6666664

W̃i j

rW̃i j

3
7777775 = Li

2
6666664

Wi j

rWi j

3
7777775 =

2
6666664

P
j Wi j! j

P
j x jiWi j! j

P
j rWi j! j

P
j rWi j ⌦ x ji! j

3
7777775

�1 2
6666664

Wi j

rWi j

3
7777775 ,

where Li denotes the correction matrix. We note that Li is (n + 1) ⇥ (n + 1) size matrix,

where n is the dimension of the smoothing kernel.
1See Gurtin (1982) for details about algebraic manipulations.
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A.3.3 Correction by Huang et al. (2019)

Huang et al. (2019) proposed to evaluate the correction matrix without using the

kernel gradient. The Taylor-series expansion of the function is convolved with the kernel

as given in eq. (A.6) and the first moment of the smoothing kernel, given by

X

j

f jxi jWi j! j =
X

j

fixi jWi j! j �
X

j

(xi j · r) fixi jWi j! j. (A.8)

From eq. (A.6) and eq. (A.8), we get
2
6666664

P
j f jWi j! j

P
j f jxi jWi j! j

3
7777775 =

2
6666664

P
j Wi j! j

P
j x jiWi j! j

P
j xi jWi j! j

P
j xi j ⌦ x ji! j

3
7777775

2
6666664

fi

r fi

3
7777775 .

Using similar manipulation as done in the previous section, we get

2
6666664

W̃i j

rW̃i j

3
7777775 = Hi

2
6666664

Wi j

xi jWi j

3
7777775 =

2
6666664

P
j Wi j! j

P
j x jiWi j! j

P
j xi jWi j! j

P
j xi j ⌦ x ji! j

3
7777775

�1 2
6666664

Wi j

xi jWi j

3
7777775 ,

where Hi is the correction matrix.

A.3.4 Correction by Fatehi et al. (2011)

In this section, we derive the correction proposed by Fatehi et al., 2011 for a second-

order convergent Laplacian approximation. We also introduce the tensor notations for

SPH that makes the comprehension of the formulations easier. We use the Taylor series

expansion in eq. (A.5). We use tensor notation to represent vector xi j as x↵i j, where i and

j are the particle indices. We follow this notation since SPH approximation is performed

using sum over all its neighbors j. Thus, we write the eq. (A.5) in this tensor notation as

f j = fi � x↵i j@
↵ fi +

1
2

x�i jx
�
i j@

�@� fi + O(|�x|3). (A.9)

We note that the subscripts are SPH notations and the superscripts are tensor notation

indices.

We write the Laplacian of the function f using the method proposed by Cleary et al.

(1999) as

h@⌘@⌘ f ii =
X

j

2! j( fi � f j)
@⌘Wi jx

⌘
i j

r2
i j
. (A.10)

The error Ei in the approximation is

Ei = @
⌘@⌘ fi � h@⌘@⌘ f ii . (A.11)



A.3 Derivation of kernel gradient correction 189

Using eq. (A.9) and eq. (A.10), we obtain the error

Ei = @
✓@✓ fi �

X

j

2! j
⇥
x↵i j@

↵ fi �
1
2

x�i jx
�
i j@

�@� fi+

O(|�x|3)
⇤@⌘Wi jx

⌘
i j

r2
i j
.

(A.12)

In the above equation, we can write @✓@✓ fi = �✓◆@✓@◆ fi and multiplying each term inside,

we get

Ei = �@↵ fi

X

j

2! je↵i je
⌘
i j@

⌘Wi j+

✓
K

�� +
X

j

! jx
�
i jx

�
i j

@⌘Wi jx
⌘
i j

r2
i j

◆
@�@� fi + O(|�x|3),

(A.13)

where K is the Kronecker delta 2. We can see that the first term is leading error term in

the above equation. For a smoothing kernel W, the term
P

j ! j(xi j⌦xi j)rWi j is the second

moment of the kernel gradient. In a UP domain, the second moment is zero. However,

the leading term of the error is the second moment scaled by 1
|xi j |2 which is still zero since

it is a constant in a UP domain. Whereas, in the case of a PP domain, the leading term is

non-zero and causes the approximation to deviate.

In the modified formulation proposed by Fatehi et al. (2011), the leading term is

included in the approximation. The modified form is given by

D
@✓@✓ fi

E
i
=

X

j

2! j(( fi � f j) � x↵i j h@↵uii)
@⌘Wi jx

⌘
i j

r2
i j
. (A.14)

Using a similar algebraic manipulation, we write the error term as

Ei =
✓X

j

! jx
�
i jx

�
i j@

✓Wi jBT,✓↵
i

X

j

! je↵i je
⌘
i j@

⌘Wi j+

K
�� +

X

j

! jx
�
i jx

�
i j

@⌘Wi jx
⌘
i j

r2
i j

◆
@�@� fi + O(|�x|3),

(A.15)

where BT
i =

⇣P
j rWi j ⌦ (x j � xi)! j

⌘�T
is the correction matrix. Fatehi et al. (2011) also

proposed a correction for the kernel gradient. Let us assume the correction F⌘µ
i is applied

to the kernel gradient. The modified equation is given by

D
@✓@✓ fi

E
i
=

X

j

2! j(( fi � f j) � x↵i j h@↵ f ii)
F⌘µ

i @
µWi jx

⌘
i j

r2
i j

. (A.16)

2We use a di↵erent symbol than the common used � symbol as �-SPH is a widely used scheme in SPH

literature.
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The error in the above equation is given by

Ei =
✓X

j

! jx
�
i jx

�
i j@

✓Wi jBT,✓↵
i

X

j

! je↵i je
⌘
i jF

⌘µ
i @
µWi j+

K
�� +

X

j

! jx
�
i jx

�
i j

F⌘µ
i @
µWi jx

⌘
i j

r2
i j

◆
@�@� fi + O(|�x|3).

(A.17)

In order to make the approximation second-order accurate, we must have the coe�cient

of @�@� fi equal to zero. Thus we get
X

j

! jx
�
i jx

�
i j@

✓Wi jBT,✓↵
i

X

j

! je↵i je
⌘
i jF

⌘µ
i @
µWi j+

X

j

! je
�
i je

�
i jF

⌘µ
i @
µWi jx

⌘
i j = �K��.

(A.18)

On inverting the system, we obtain

F⌘µ
i = �

✓X

j

! j@
µWi jx

⌘
i j+

X

j

! jr2
i j@

✓Wi jBT,✓↵
i

X

j

! je↵i je
⌘
i j@
µWi j

◆�1
.

(A.19)

The above equation is the correction matrix proposed by Fatehi et al. (2011) in a simple

tensorial notation.

A.3.5 Correction by Korzilius et al. (2017)

In this section, we derive the correction proposed by Korzilius et al. (2017) for

Laplacian formulation that involves the usage of the double derivative of the smoothing

kernel. The Laplacian approximation with the double derivative of the smoothing kernel

is given by
D
r2 f

E
i
=

X

j

( f j � fi)r2Wi j! j.

Using the Taylor-expansion in eq. (A.5), the error in the above approximation is given by

Ei = r2 fi �
X

j

 
�(xi j · r) fi +

1
2

(xi j · r)2 fi + O(|xi j|3)
!
r2Wi j! j.

In the tensor notation, we can write

Ei = @
�@� fi +

X

j

x�i j@
� fi@

↵@↵Wi j! j �
X

j

x�i jx
✏
i j@

�@✏ fi@
↵@↵Wi j! j

=

2
6666664
X

j

x�i j@
↵@↵Wi j! j

3
7777775 @

� fi �
2
6666664K

�✏ �
X

j

x�i jx
✏
i j@

↵@↵Wi j! j

3
7777775 @

�@✏ fi.
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Clearly, the coe�cient of the gradient of the function is non-zero, resulting in a O(h) error.

Chen et al. (2000) included the first term in the above equation in the approximation

and solved for all the derivatives of order 2 simultaneously. Consider the Taylor series

expansion in eq. (A.5), convolving with all second-order derivative of the form @a@bW we

get
X

j

f j@
x@xWi j! j =

X

j

fi@
x@xWi j! j �

X

j

x↵i j@
↵ fi@

x@xWi j! j +
X

j

1
2

x�i jx
�
i j@

�@� fi@
x@xWi j! j,

X

j

f j@
x@yWi j! j =

X

j

fi@
x@yWi j! j �

X

j

x↵i j@
↵ fi@

x@yWi j! j +
X

j

1
2

x�i jx
�
i j@

�@� fi@
x@yWi j! j,

and
X

j

f j@
y@yWi j! j =

X

j

fi@
y@yWi j! j �

X

j

x↵i j@
↵ fi@

y@yWi j! j +
X

j

1
2

x�i jx
�
i j@

�@� fi@
y@yWi j! j.

Therefore, we have the linear system

1
2

2
66666666666664

P
j xx

i jx
x
i j@

x@xWi j! j
P

j xx
i jx
y
i j@

x@xWi j! j
P

j xyi jx
y
i j@

x@xWi j! j
P

j xx
i jx

x
i j@

x@yWi j! j
P

j xx
i jx
y
i j@

x@yWi j! j
P

j xyi jx
y
i j@

x@yWi j! j
P

j xx
i jx

x
i j@
y@yWi j! j

P
j xx

i jx
y
i j@
y@yWi j! j

P
j xyi jx

y
i j@
y@yWi j! j

3
77777777777775

2
66666666666664

@x@x fi

@x@y fi

@y@y fi

3
77777777777775

=

2
66666666666664

P
j( f j � fi)@x@xWi j! j +

P
j x↵i j@

↵ fi@x@xWi j! j
P

j( f j � fi)@x@yWi j! j +
P

j x↵i j@
↵ fi@x@yWi j! j

P
j( f j � fi)@y@yWi j! j +

P
j x↵i j@

↵ fi@y@yWi j! j

3
77777777777775
,

where @x, @y denotes the x and y component of the partial derivatives. It must be noted that

the gradient approximation on the RHS is not first-order consistent. The above equation

can be written in a shorter form given by
1
2

X

j

⇣↵i j4̃�Wi j! j4̃↵ fi =
X

( f j � fi)4̃�Wi j! j +
X

x�i j@
� fi4̃�Wi j! j,

where ⇣i j =
h
xx

i jx
x
i j xx

i jx
y
i j xyi jx

y
i j

iT
and 4̃ =

h
@x@x @x@y @y@y

iT
. Korzilius et al. (2017)

proposed to use the corrected gradient approximate to evaluate @� fi in the above approxi-

mation resulting in a di↵erent correction matrix given by

Ki =

2
6666664
1
2

X

j

⇣↵i j4̃�Wi j! j �
X

j

4̃�x↵jiB
↵�
i ! j

X

j

1
2
@�Wi j⇣

�
i j! j

3
7777775

�1

.

A.4 Derivation of error terms in SPH approximations
We use the Taylor-series expansion of an arbitrary field f at x̃ about x, given by

f (x̃) = f (x) � (�x · r) f (x) +
1
2

(�x ⌦ �x) : (r ⌦ r) f (x) + O(|�x|3), (A.20)

where �x = x � x̃, r =
h
@
@x

@
@y

@
@z

i
. In the following subsection we present the derivation

for various approximations.
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A.4.1 Error in continuous SPH interpolation

The continuous SPH interpolation of an arbitrary field is given by

f (x) ⇡
Z

⌦

f (x̃)W(�x)dx̃, (A.21)

where W(�x) = W(x� x̃, h). Substituting the Taylor-series expansion from eq. (A.20), we

get

f (x) ⇡
Z

⌦

"
f (x) � (�x · r) f (x) +

1
2

(�x ⌦ �x) : (r ⌦ r) f (x) + O(|�x|3)
#

W(�x)dx̃.

Expanding the above equation, we get

h f (x)i = f (x)
Z

⌦

W(�x)dx̃ � r f (x) ·
Z

⌦

�xW(�x)dx̃+

1
2

(r ⌦ r) f (x) :
Z

⌦

(�x ⌦ �x)W(�x)dx̃ +
Z

⌦

O(|�x|3)W(�x)dx̃,
(A.22)

where h·i denotes the approximation. The smoothing kernel is even function such that

W(��x) = W(�x). (A.23)

Therefore, Z

⌦

W(�x)dx̃ = 1, (A.24)

and the odd moment of the kernel,
Z

⌦

�xW(�x)dx̃ = 0. (A.25)

Substituting these in eq. (A.22), we get

h f (x)i = f (x) +
1
2

(r ⌦ r) f (x) :
Z

⌦

(�x ⌦ �x)W(�x)dx̃
|                                             {z                                             }

O(h2)

+

Z

⌦

O(|�x|3)W(�x)dx̃
|                     {z                     }

O(h3)

,

where
R
⌦

(�x ⌦ �x)W(�x)dx̃ is the second moment of the smoothing kernel. The second

term in the above equation is O(h2), and the last term is O(h3). Therefore, the continu-

ous SPH interpolation is second-order accurate in space. Since the odd moments of the

smoothing kernel are zero owing to the properly in eq. (A.23), the integral in the last term

of the above equation is also zero. Therefore, the next term is the next highest order of

error i.e. O(h2).
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A.4.2 Error in continuous SPH gradient interpolation

The continuous SPH interpolation of the gradient of an arbitrary function is given

by

hr f (x)i =
Z

⌦

f (x)rW(�x)dx̃. (A.26)

Substituting the Taylor-series expansion from eq. (A.20), we get

f (x) ⇡
Z

⌦

"
f (x) � (�x · r) f (x) +

1
2

(�x ⌦ �x) : (r ⌦ r) f (x) + O(|�x|3)
#
rW(�x)dx̃.

Expanding the above equation, we get

hr f (x)i = f (x)
Z

⌦

rW(�x)dx̃ � r f (x) ·
Z

⌦

�xrW(�x)dx̃+

1
2

(r ⌦ r) f (x) :
Z

⌦

(�x ⌦ �x)rW(�x)dx̃ +
Z

⌦

O(|�x|3)rW(�x)dx̃.
(A.27)

The gradient of the smoothing kernel is odd function such that

rW(��x) = �rW(�x). (A.28)

Therefore, Z

⌦

rW(�x)dx̃ = 0, (A.29)

and the odd moment of the gradient of the kernel,
Z

⌦

�xrW(�x)dx̃ = �1. (A.30)

Substituting these in eq. (A.27), we get

hr f (x)i = r f (x) +
1
2

(r ⌦ r) f (x) :
Z

⌦

(�x ⌦ �x)rW(�x)dx̃
|                                               {z                                               }

O(h2)

+

Z

⌦

O(|�x|3)rW(�x)dx̃
|                       {z                       }

O(h3)

.

(A.31)

The second term in the above equation is O(h2), and the last term is O(h3). Therefore, the

continuous SPH interpolation is second-order accurate in space.

A.4.3 Error estimation of discrete SPH gradient approximation

In this section, we derive error terms for di↵erent gradient approximations. We first

formulation referred as G1 is given by

hr fiii =
X

j

f jrWi j! j, (A.32)
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where r fi = ri f (xi). Using the Taylor-series expansion for f j about xi, we have

Ei = hr f ii � r fi

=
X

j

f jrWi j! j � r fi

=
X

j

"
fi � (xi j · r) fi +

1
2

(xi j · r)2 fi + O(|xi j|3)
#
rWi j! j � r fi.

Therefore, highest order of error is O(0) due to fi
P

j rWi j! j. Next, we consider the

conservative formulation, referred as G2, given by

hr fiii =
X

j

( f j + fi)rWi j! j.

Using the Taylor-series expansion of f j about xi, we get

Ei =
X

j

"
2 fi � (xi j · r) fi +

1
2

(xi j · r)2 fi + O(|xi j|3)
#
rWi j! j � r fi.

The error is again O(0) as highest error doubled to 2 fi
P

j xi jrWi j! j. We now consider

another conservative formulation, referred as G3, given by
*r f
⇢

+

i
=

X

j

m j

0
BBBBB@

f j

⇢2
j
+

fi

⇢2
i

1
CCCCCArWi j.

The formulation G2 and G3 have conservative formulation. The error term of the G3 will

be complex however an O(0) error is expected. We consider the Liu correction matrix

multiplied to G2, referred to as formulation G4, given by

hr fiii =
X

j

( f j + fi)LirWi j! j.

Therefore, the error is

Ei =
X

j

"
2 fi � (xi j · r) fi +

1
2

(xi j · r)2 fi + O(|xi j|3)
#
rWi j! j � r fi

= 2 fi

X

j

LirWi j! j + r fi

X

j

(I � x ji ⌦ LirWi j! j) +
1
2

(xi j · r)2 fiLirWi j! j.

From the derivation of the Liu correction, we obtain that the first and the second term are

zero. Therefore, the highest error is 1
2(xi j · r)2 fiLirWi j! j. We next consider the zeroth-

order convergent formulation referred to as G5, given by

hr fiii =
X

j

( f j � fi)rWi j! j.
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Name Formulation Error Order

G1
P

j f jrWi j! j fi
P

j rWi j! j O(0)

G2
P

j( f j + fi)rWi j! j 2 fi
P

j rWi j! j O(0)

G3
P

j m j

✓
f j

⇢2
j
+ fi

⇢2
i

◆
rWi j 2 fi

P
j rWi j! j O(0)

G4
P

j( f j + fi)LirWi j! j
1
2 (xi j · r)2 fiLirWi j! j O(h2)

G5
P

j( f j � fi)rWi j! j

⇣P
j rWi j ⌦ x ji! j � I

⌘
r fi O(h)

G6
P

j( f j � fi)BirWi j! j
1
2 (xi j · r)2 fiBirWi j! j O(h2)

Table A.1 : Di↵erent gradient formulations, their dominating error terms, and corre-

sponding order for a uniform arrangement of particle.

Using the Taylor series expansion, the error is

Ei =
X

j

"
�(xi j · r) fi +

1
2

(xi j · r)2 fi + O(|xi j|3)
#
rWi j! j � r fi

=

0
BBBBBB@
X

j

rWi j ⌦ x ji! j � I

1
CCCCCCAr fi +

1
2

(xi j · r)2 firWi j! j.

The highest error is O(h). However, on applying the Bonet correction Bi to the kernel

gradient, we get the formulation referred as G6, given by

hr fiii =
X

j

( f j � fi)BirWi j! j,

where the highest error goes to 1
2(xi j · r)2 fiBirWi j! j. We summarize the error of all the

gradient discretizations in the table A.1.

A.4.4 Error estimation of discrete SPH Laplacian approximation

The error terms in various formulations are derived along with the correction in

appendix A.3.4 and appendix A.3.5. One more formulation using double summation is

given by
D
r2 f

E
i
=

X

j

(hr f i j � hr f ii)rWi j! j

=
X

j

0
BBBBB@
X

k

( fk � f j)BjrWjk!k �
X

l

( fl � fi)BirWil!l

1
CCCCCArWi j! j,

where hr f ii are the first order consistent gradient approximation. The error in the above

approximation is given by

Ei = @
⌘@⌘ fi � h@⌘@⌘ f ii .
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Using expansion for gradient terms, we write

Ei = @
⌘@⌘ fi �

X

j

0
BBBBB@
X

k

( fk � f j)B
⌘↵
j @

↵Wjk!k �
X

l

( fl � fi)B
⌘�
i @

�Wil!l

1
CCCCCA @

⌘Wi j! j.

Using the Taylor series expansion of fk, f j, and fl about xi, we get

Ei = @
⌘@⌘ fi �

X

j

✓X

k

✓
[ fi � x↵ik@

↵ fi +
1
2

x�ik x�ik@
�@� fi] � [ fi � x↵i j@

↵ fi +
1
2

x�i jx
�
i j@

�@� fi]
◆

B⌘�
j @

�Wjk!k �
X

l

✓
[ fi � x↵il@

↵ fi +
1
2

x�ilx
�
il@

�@� fi] � fi

◆
B⌘�

i @
�Wil!l

◆
@⌘Wi j! j

= @⌘@⌘ fi �
X

j

✓X

k

✓
[(x↵i j � x↵ik)@

↵ fi +
1
2

(x�ik x�ik � x�i jx
�
i j)@

�@� fi]
◆

B⌘�
j @

�Wjk!k �
X

l

✓
[�x↵il@

↵ fi +
1
2

x�ilx
�
il@

�@� fi

◆
B⌘�

i @
�Wil!l

◆
@⌘Wi j! j

=
X

j

✓
�

X

k

x↵jkB⌘�
j @

�Wjk!k@
⌘Wi j! j +

X

l

x↵il B
⌘�
i @

�Wil!l@
⌘Wi j! j

◆
@↵ fi+

1
2

✓
K

�� +
X

k

�(x�ik x�ik � x�i jx
�
i j)B

⌘�
j @

�Wjk!k@
⌘Wi j! j �

X

l

x�ilx
�
ilB

⌘�
i @

�Wil!l@
⌘Wi j! j

◆
@�@� fi.

Therefore, the first term in the above equation dominates making the formulation O(h)

accurate. However, on applying the correction to the kernel gradient, given by
D
r2 f

E
i
=

X

j

(hr f i j � hr f ii)rWi j! j

=
X

j

0
BBBBB@
X

k

( fk � f j)BjrWjk!k �
X

l

( fl � fi)BirWil!l

1
CCCCCA BirWi j! j.

The first term equals in the error expression equals to zero making the formulation O(h2)

accurate. In table A.2 we tabulate di↵erent Laplacian formulation their dominating error

term and order of convergence.
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A.4.5 Quadrature error in discrete SPH gradient approximation

In this section, we show the error estimation due to discrete approximation of the

integration in the continuous SPH interpolation done by Quinlan et al. (2006) in detail. For

a general function f defined in [x1, xn] in 1D, using the second Euler-Maclaurin formula,

we can write

�x
nX

j=1

f j =

Z xn+�x/2

x1��x/2
f (x)dx +

1X

k=1

B2k�x2k

(2k)!

⇣
1 � 2�2k+1

⌘ ⇣
f (2k�1)
(n+1/2) � f (2k�1)

1/2

⌘
, (A.33)

where f j = f (x1 + j�x), B2k is the Bernoulli numbers, and f k is the kth derivative of the

function f i evaluated at the edge of the compact support smoothing kernel. Consider the

function f (x) = A(x)W 0(xa � x) = A(x)W 0, where x = xa is the position of the kernel.

The discrete form is given by f j = AjW
0(xa � x j) = AjW

0
j. Substituting this in the above

equation, we get

nX

j=1

AjW
0
j�x =

Z xn+�x/2

x1��x/2
A(x)W

0
dx+

1X

k=1

B2k�x2k

(2k)!

⇣
1 � 2�2k+1

⌘ ⇣
(AW 0)(2k�1)

(n+1/2) � (AW 0)(2k�1)
1/2

⌘
.

The first term on the LHS is the discrete SPH approximation of the function in 1D, and

the first term on the RHS is the continuous SPH interpolation. Therefore, the last term is

the exact quadrature error. Furthermore, the smoothing kernel has some of the non-zero

lower-order derivatives at kernel boundary; therefore (AW 0)(2k�1)
(n+1/2) � (AW 0)(2k�1)

1/2 is zero for

2k + 1  � � 1. In this derivation, cubic spline kernel is considered for which � = 2.

Considering the first non-zero term with 2k = �+ 2, and the position corresponding to the

boundary of the kernel centered at xa i.e. {xa + 2h, xa � 2h}, we get

Ei =

nX

j=1

AjW
0
j�x �

Z xn+�x/2

x1��x/2
A(x)W

0
dx

= �x�+2 B�+2

(� + 2)!

⇣
1 � 2���1

⌘ h�
AW 0�(�+1)

x=xa+2h �
�
AW 0�(�+1)

x=xa�2h

i
+ O

⇣
�x�+4

⌘
.

(A.34)

Consider the Taylor-series expansion of the function A(x) about xa, given by

A(x) = Aa + A
0
a�x + A

00
a�x2/2 + O(�x3).

Therefore,

(AW 0)(�+1) = ((Aa + A
0
a�x + A

00
a�x2/2 + O(�x3))W 0)(�+1)

= (AaW 0)(�+1) + (A
0
a�xW 0)(�+1) + (A

00
a�x2W 0/2)(�+1) + (O(�x3)W 0)(�+1).
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Name Formulation Error Order
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◆

Table A.3 : Di↵erent gradient formulations, their dominating quadrature error terms,

and corresponding order for uniform arrangement of particles.

The derivative of the 1D smoothing kernel is given by, W 0 = h�2Ŵ 0 . Therefore, the above

equation is written as

�
AW 0�(�+1)

=
Aa

h(�+3) Ŵ (�+2) +
A0a

h(�+2)

h
qŴ (�+2) + (� + 1)Ŵ (�+1)

i

+
A00a

2h(�+1)

h
q2Ŵ (�+2) + 2q(� + 1)Ŵ (�+1) + (� + 1)�Ŵ (�)

i
+ O

 
1

h(�)

!
,

where q = �x/h. Using the above expression, we obtain
h�

AW 0�(�+1)
x=xa+2h �

�
AW 0�(�+1)

x=xa�2h

i

=
A0a

h�+2

h
4Ŵ (�+2)
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A000a
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q=2 + 6(� + 1)�Ŵ (�)

q=2 + (� + 1)�(� � 1)Ŵ (��1)
q=2

i
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1
h��2

!
.

Putting this term in the eq. (A.34), we get

Ei =

 
�x
h

!�+2 B�+2

(� + 2)!

⇣
1 � 2���1

⌘

⇥
n
A0a

h
4Ŵ (�+2)
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⌘o
+ O

0
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"
�x
h

#�+41CCCCA .

Therefore, in addition to the O(h2) error, the quadrature introduces O
✓⇣
�x
h

⌘�+2
◆

error. In

the case of the smoothing kernel having odd � the error becomes O
✓⇣
�x
h

⌘�+1
◆
. In a similar

manner, we can derive the quadrature error for various other terms as done by Fatehi et al.

(2011). In the table A.3 and table A.4, we tabulate the quadrature error from di↵erent

gradient and Laplacian formulations.
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A.4.6 Quadrature error in discrete SPH gradient approximation on
a non-uniform particle distribution

In this section, we derive an error in gradient approximation for an irregular arrange-

ment of particle done by Fatehi et al. (2011). Consider the perturbation di on the particles

placed on Cartesian grid with spacing �s. The perturbation di introduced using a Normal

distribution given by

d̃i = 0.25�sz,

where z 2 {[�0.5, 0.5], [�0.5, 0.5], [0.5, 0.5]} is the random variable generated from a

normal distribution with zero means. The new position is given by

xi j = xreg
i j + d̃i j,

where d̃i j = d̃i � d̃ j. The kernel function using the Taylor-series approximation is given

by

W(xi j) = W(xreg
i j + d̃i j)

= W(xreg
i j ) + d̃i j · rW(xreg

i j ) + HOT,

where HOT are the higher-order term. Similarly, the gradient of the kernel is approxi-

mated as

rW(xi j) = rW(xreg
i j ) + d̃i j · rrW(xreg

i j ) + HOT.

Therefore, the terms that are zero in the quadrature error due to symmetry of the kernel

in the uniform arrangement of particles are non-zero, thus produces error. The quadrature

error for
X

j

rWi j! j ⇡ |d̃i|
X

j

r · rWi j! j ⇡ O
0
BBBB@
|d̃i|
h2

 
�s
h

!��11CCCCA .

In the appendix A.4.6, we list the errors for various summations derived by Fatehi et al.

(2011). In table A.6 and table A.7, we tabulate the order of error for various formulations.
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Summarize Order
P
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⇣
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◆

Table A.5 : Order of quadrature errors for di↵erent SPH summations for an irregular

arrangement of particles.

Name Formulation Error Order
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⇣
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◆

Table A.6 : Di↵erent gradient formulations, their dominating quadrature error terms,

and corresponding order for non-uniform particle arrangement.
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A.5 Weakly-compressible SPH schemes
In the weakly-compressible SPH (WCSPH) schemes, eq. (1.40) is discretized using the

formulations discussed in section 1.3. Furthermore, two widely used artificial EOS are

p = po

0
BBBB@
 
⇢

⇢o

!7

� 1
1
CCCCA , (A.35)

where po and ⇢o are reference pressure and density, and

p = c2
o (⇢ � ⇢o) . (A.36)

In SPH, the weakly-compressible assumption is used in the following schemes.

A.5.1 Standard scheme

In the first application of a weakly-compressible model using SPH to solve fluid

flows proposed by Morris et al. (1997), the continuity equation in eq. (1.40a) is discretized

as
d⇢i

dt
=

X

j

(ui � u j) · rWi j! j, (A.37)

and the momentum equation is discretized as

dui

dt
=

X

j

�mj

0
BBBBB@

pi

⇢2
i
+

pj

⇢2
j

1
CCCCCArWi j + 2mj

(µi + µ j)(ui � u j)
⇢i⇢ jri j

ei j · rWi j, (A.38)

where µ is the dynamic viscosity of the fluid. The discretization conserves the linear

and angular momentum for particles having constant mass. The pressure is linked to the

density using eq. (A.35), where po = ⇢oc2
o.

A.5.2 �-SPH scheme

The standard scheme is prone to high-frequency pressure oscillations due to the high

sensitivity of pressure to the change in density. Antuono et al. (2010) proposed to add a

density damping term in the continuity equation, given by

d⇢
dt
= �⇢r · u + Dr2⇢, (A.39)

where D = �hco, where � = 0.1 suggested by Antuono et al. (2010). A convergent

discretization of the density damping term proposed by Marrone et al. (2011) is given by

D
r2⇢

E
i
=

X

j

2! j

 
(⇢i � ⇢ j)

ri j
� ei j ·

⇣
hr⇢ii + hr⇢i j

⌘!
ei j · rWi j, (A.40)

where hr⇢ii is the corrected gradient formulation as shown in eq. (1.27) for pressure. The

rest of the operators are discretized as in the case of the standard scheme.
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A.5.3 Transport Velocity Formulation (TVF)

In the standard and �-SPH scheme, the particles tend to clump in the presence of

negative pressure. Adami et al. (2013) proposed to add a background pressure pb in the

domain to regularize the particle distribution. The particles are advected with the new

transport velocity ũ. Therefore, the modified velocity transport equation is given by

d̃u
dt
= �rp

⇢
+ ⌫r2u + r · (u ⌦ (ũ � u)), (A.41)

where d̃(•)
dt =

@(•)
@t + ũ ·r(•). In TVF, the continuity equation is replaced by the summation

density formulation, given by

⇢i =
X

j

miWi j, (A.42)

and the pressure is computed using a linear equation of state given by

pi = c2
o(⇢i � ⇢o). (A.43)

Therefore, the particle distribution a↵ects the pressure in the flow. The momentum equa-

tion in eq. (A.41) is discretized as

d̃ui

dt
=

1
mi

X

j

⇣
!2

i + !
2
j

⌘ "
�p̃i jrWi j +

1
2

⇣
Ai + A j

⌘
· rWi j + µ̃i j

ui j

ri j
ei jrWi j

#
, (A.44)

where

p̃i j =
⇢i pi + ⇢ j pi

⇢i + ⇢ j
,

µ̃i j =
2µiµ j

µi + µ j
,

where µ = ⇢⌫, and A = ⇢u ⌦ (ũ � u). The transport velocity is computed by adding an

additional acceleration due to a constant background pressure pb, given by

ũi = ui � �t
pb

⇢i

X

j

rWi j! j. (A.45)

This method generates a more homogenous particle distribution. However, it is not ap-

plicable to free surface flow problems since eq. (A.42) is used to evaluate density which

underestimated density near the free surface. Also, the normalization form would blow

up the particles.

Zhang et al. (2017) proposed Generalized TVF (GTVF) scheme, where the density

is evolved using the modified continuity equation, given by

d̃⇢
dt
= �⇢r · ũ (A.46)
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They suggested using a variable background pressure that eliminates the tensile instability

completely. It allows the scheme to be applicable to free-surface flow and solid material

problems. The density is reinitialized after every timestep to avoid large errors at a high

Reynolds number.

A.5.4 Entropically Damped Artificial Compressibility (EDAC)
scheme

In an attempt to remove the usage of the artificial equation of state, Ramachandran

et al. (2019) extended the Entropically Damped Artificial Compressibility (EDAC) for-

mulation proposed by Clausen (2013) to SPH. The pressure is evolved using the pressure

evolution equation given by

dp
dt
= �⇢c2

or · u + ⌫̃r2 p, (A.47)

where ⌫̃ = ↵hco/8, where the recommended value of ↵ = 0.5. Equation (A.47) is sim-

ilar to the density evolution in eq. (A.40); however, the SPH discretization is performed

di↵erently, given by

dpi

dt
=

X

j

2
6666664⇢ic2

oui j · rWi j +

⇣
!2

i + !
2
j

⌘

mi
µ̃i j

p̃i j

(r2
i j + ⌘h2

i j)
rWi j · xi j

3
7777775 , (A.48)

where µ̃i j =
2µ̃iµ̃ j

µ̃i+µ̃ j
, where µ = ⇢⌫̃. Ramachandran et al. (2019) also coupled the EDAC

formulation with the TVF formulation by incorporating the regularization force in the

momentum equation.

A.5.5 Arbitrary Lagrange Eulerian SPH (ALE-SPH) and �+SPH
scheme

Recently, Sun et al. (2019) followed by Jacob et al. (2021) and Adepu et al. (2021)

suggested improvement to apply the shifting velocity in the governing equations correctly.

The original continuity equation in eq. (A.46) is modified to

d̃⇢
dt
= �⇢r · ũ + r · (⇢�u) + Dr2⇢, (A.49)

where �u = ũ � u is the shifting velocity and D is a controlling parameter as used in the

�-SPH scheme. Similarly, the momentum equation in eq. (A.41) is modified to

d̃u
dt
= �rp

⇢
+ ⌫r2u + r · (u ⌦ �u) � ur · �u. (A.50)
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The shifting velocity is evaluated using the particle shifting technique (PST) proposed by

Lind et al. (2012), given by

�u = �M (2h) co

X

j

"
1 + R

 
Wi j

W(�s)

!n#
rWi j. (A.51)

The first term in eq. (A.49) is discretized using eq. (1.20) whereas the second term is

discretized using eq. (1.21). The density damping term is discretized the same as in the

case of the �-SPH scheme in eq. (A.40). In the eq. (A.50), the pressure gradient term

is discretized using eq. (1.24), and the viscous terms are evaluated using the formulation

in eq. (1.33). Furthermore, the third term is discretized using the symmetric divergence

formulation in eq. (1.21) whereas the last term is discretized using the asymmetric formu-

lation in eq. (1.20).

A.5.6 Eulerian WCSPH scheme

SPH method can be applied to an Eulerian framework as well. Noutcheuwa et al.

(2012) followed by Lind et al. (2016) proposed the Eulerian SPH scheme for the incom-

pressible model. Recently, Nasar et al. (2019) proposed Eulerian Weakly-Compressible

SPH (EWCSPH) scheme. The Eulerian NS equation is given by

@⇢

@t
= �⇢r · u � u · r⇢, (A.52a)

@u
@t
= �rp

⇢
+ ⌫r2u � u · ru, (A.52b)

In the Eulerian framework, particles do not move, and a Cartesian arrangement of par-

ticles is used. Therefore, the density ⇢ of the particle is constant in the domain resulting

r⇢ = 0. Therefore, Nasar et al. (2019) suggests ignoring the last term in the eq. (A.52a).

The modified continuity equation is given by

@⇢

@t
= �⇢r · u. (A.53)

For all the schemes described above, the time step for the time integrator is given by

�t = min
 
0.3

h
U + co

, 0.25
h2

⌫

!
, (A.54)

where U is the maximum velocity in the domain.

In algorithm 8, we show the generic algorithm for the WCSPH scheme. The inputs

for the scheme are the particle arrays with N number of particles, fluid properties like

dynamic viscosity, and initial condition. The scheme produces the results after evolving

the properties till the final time tf. The function ComputeTimestep sets the time step for
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Algorithm 8: Pseudo-code for WCSPH scheme.
Input: Particle arrays, kinematic viscosity, initial conditions
Result: Evolved properties at t=tf
ComputeTimestep();

while t < tf do
for i=1:N do
ComputePressure();

end
for i=1:N do
ComputeDivergence();

ComputeForces();

end
for i=1:N do
TakeOneTimeStep();

end
t = t + dt;

end

the simulation using the criteria in eq. (A.54). The simulation ends when the time reaches

tf. First, the pressure is evaluated for all the particles in ComputePressure. This pressure

is used to evaluate divergence and forces in ComputeDivergence and ComputeForces,

respectively. These accelerations are used in the integrator in TakeOneTimeStep. For

brevity, we do not show all the integration stages in the algorithm. Furthermore, we do

not consider any boundaries. However, this algorithm can be applied to solve periodic

problems like the Taylor-Green vortex and the Gresho-Chan vortex.

A.6 �+SPH formulation correction
The evolution equation of the �+SPH equation has the form

D f
Dt
=

d f
dt
+ r f · �u, (A.55)

where �u is the shifting velocity and D f
Dt =

@ f
@t + (u + �u) · r f . The above equation for a

particle i is given by
D fi

Dt
=

d fi

dt
+ r fi · �ui. (A.56)

We can use the vector identity for the last term given by

r f · �u = r · ( f �u) � fr · (�u). (A.57)
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On performing SPH approximation, we obtain

r fi · �ui =
X

j

( f j�u j � fi�ui) · rWi j! j�
X

j

fi(�uj � �ui) · rWi j! j

=
X

j

( f j � fi)�u j · rWi j! j.

(A.58)

Clearly, we cannot recover the LHS should we use the above discretization. However, on

using f j in place of fi in the second term, we get

r fi · �ui =
X

j

( f j�u j � fi�ui) · rWi j! j�
X

j

f j(�uj � �ui) · rWi j! j.

=
X

j

( f j � fi)�ui · rWi j! j.

(A.59)

Thus, in the �+SPH, we should use the discretization in eq. (A.59).

A.7 Schemes with issues solving the Gresho-Chan vortex
In this section, we show the results of the scheme for which the Gresho-Chan vortex

problem failed to complete. In fig. A.1, we plot the velocity of the particles with the

distance, r from the center at t = 1.5s, and the linear momentum in the x-direction with

time for a 100⇥ 100 simulation. Clearly, all the schemes considered show better approxi-

mate conservation of linear momentum compared to other schemes; however, they fail to

complete.

In the case of L-RR-C, due to the presence of sharp change in the velocity field,

the remeshing procedure diverges (Chaniotis et al., 2002). In the case of E-C, TV-C, and

EWCSPH schemes, we suspect that the advection term u ·ru (or �u ·ru in case of TV-C)

diverge in the absence of viscosity. This opens possible avenues of research to obtain a

better discretization of the advection term.
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Figure A.1 : The velocity of particles with the distance from the center of the vortex

(left) and the x-component of the total linear momentum (right) for the

Gresho-Chan vortex problem.
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