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Abstract

Green’s function characterizes a partial differential equation (PDE) and
maps its solution in the entire domain as integrals. Finding the analyti-
cal form of Green’s function is a non-trivial exercise, especially for a PDE
defined on a complex domain or a PDE with variable coefficients. In this
paper, we propose a novel boundary integral network to learn the domain-
independent Green’s function, referred to as BIN-G. We evaluate the Green’s
function in the BIN-G using a radial basis function (RBF) kernel-based neu-
ral network. We train the BIN-G by minimizing the residual of the PDE and
the mean squared errors of the solutions to the boundary integral equations
for prescribed test functions. By leveraging the symmetry of the Green’s
function and controlling refinements of the RBF kernel near the singularity
of the Green function, we demonstrate that our numerical scheme enables
fast training and accurate evaluation of the Green’s function for PDEs with
variable coefficients. The learned Green’s function is independent of the do-
main geometries, forcing terms, and boundary conditions in the boundary
integral formulation. Numerical experiments verify the desired properties of
the method and the expected accuracy for the two-dimensional Poisson and
Helmholtz equations with variable coefficients.
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Domain-independent Kernel methods

1. Introduction

1 Elliptic partial differential equations (PDEs) arise in many research
areas, such as fluid dynamics, geophysics, electrostatics, electro-magnetics,
image processing, and materials science. Green’s function, also known as
the fundamental solution of the PDE, enables one to write the solution of
the PDE as integrals. With the help of the Green’s function, computational
methods based on integral formulations have been developed and show ex-
cellent accuracy and efficiency [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Green’s
function also plays a significant role in the analysis of PDEs and helps to
establish the well-posedness and regularity properties of the PDEs [14]. Usu-
ally, both the PDE analysis and numerical methods require an analytical
form of the Green’s function to establish theories and numerical schemes
(e.g., quadratures).

Recently, as a variant of the classic integral methods, the kernel-free
boundary integral method (KFBIM) was proposed [15, 16]. One of the salient
features of the KFBIM is that it does not require an explicit form of the
Green’s function or special quadratures to directly evaluate integrals. The
main idea behind KFBIM is to reinterpret the boundary integrals as solutions
to an equivalent simple interface problems. It can be solved efficiently using
Cartesian grid-based methods. Compared to the traditional finite difference
or finite element methods, the KFBIM produces a well-conditioned linear
systems and requires only a fixed number of iterations to converge (when an
iterative method is applied). The KFBIM has been successful in numerically
solving elliptic PDEs in two and three dimensions [17, 18, 19, 20]. How-
ever, one still does not gain insight into the Green’s function (fundamental
solution) of the PDE.

Methods for finding the Green’s functions include analytically deriving
formulas or computing eigenfunction expansions for PDEs defined on simple
geometries or numerically solving a singular PDE (e.g., by approximating
the Dirac delta function). However, when the geometry of the domain is
complex, or the PDE has variable coefficients, finding the analytical form of
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the Green’s function is indeed a non-trivial exercise.
In recent years, neural networks (NNs) have been employed to solve par-

tial differential equations owing to the development of automatic differen-
tiation, see [21, 22, 23, 24, 25, 26] and many others. Using these neural
networks, the boundary value or interface problem can be solved by simply
adding a loss term for the interface or boundary condition [27]. Tseng et al.
[28] proposed to introduce a cusp-enforced level set function as an additional
feature to the NN. However, the physics-informed neural networks (PINNs)
approach is known to have poor convergence for boundary value problem
[29, 30, 31].

In order to overcome this issue, researchers proposed boundary integral-
based neural networks. Lin et al. [30] used known Green’s functions to evalu-
ate solutions to various boundary value problems. They employed single and
double-layer potentials as the loss function. Lin et al. [32] extended the ap-
proach to approximate the Green’s function for the boundary value problem,
provided that the Green’s function for the infinite space is available. Boullé
et al. [33] used the Gaussian process to generate arbitrary pairs of test and
source functions, which are then used to learn the Green function as well as
the homogeneous solution of the given PDE. However, the learned Green’s
functions were specific to a particular domain and boundary condition. Very
recently, Teng et al. [34] proposed to learn Green’s function for the PDEs
with a given domain by approximating the Dirac delta with a Gaussian func-
tion, which allows one to readily employ the learned Green’s function for this
domain with any other set of boundary conditions. Peng et al. [35] replaced
the Dirac delta with an alternative input for which an analytical form can be
calculated for a given boundary condition on an arbitrarily shaped domain.
However, one must solve the network again for the given PDE defined in a
different domain.

In this work, we propose a novel boundary integral based neural net-
work that employs a radial basis function (RBF) kernel-based neural net-
work to learn domain-agnostic Green’s function of an elliptical PDE. Since
the learned Green’s function is not limited to a specific domain, it can
be readily employed in the integral formulations for solving a moving in-
terface or a boundary problem in fluids, materials, and wave propagation
[36, 37, 7, 38, 39, 40]. Especially, problems defined in a heterogeneous me-
dia, where PDE coefficients are spatially dependent.

We construct boundary integral neural network with a trainable Green’s
function referred to as BIN-G to learn solutions of an elliptic PDE. In BIN-
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G, we use single and double-layer potentials to satisfy boundary conditions.
We evaluate the density function in these potentials using multi-layer per-
ceptron (MLP) networks. We train the BIN-G by minimizing the residual
of the PDE such that the Green function is the solution, together with the
mean-squared error in the solution using the boundary integral equation for
the prescribed test functions. To gain efficiency, we exploit the symmetry
property of Green’s function in our network, allowing us to learn the Green’s
function using a 1D sample space. Furthermore, the boundary integral for-
mulation allows one to learn the density functions using boundary samples
alone, resulting in further reduction in the computational cost.

Our salient contributions are as follows:

• We construct a RBF kernel-based neural network that allows us to
preset the approximation points and their support radius near the sin-
gularity. This offers faster and more accurate learning compared to the
MLP networks.

• We propose loss function that includes both the loss due to the PDE
and the boundary integral equations. It offers learning the domain-
independent Green’s function of the PDE and the domain-dependent
density functions during the training process.

• We employ two distinct sample spaces over which the losses are com-
puted. A relatively large domain on which the residual of the PDE
is minimized, allows one to employ the learned domain-independent
Green’s function to larger domains.

• The learned Green’s function can be readily applied to train new den-
sity functions on arbitrarily-shaped domains and sets of boundary con-
ditions.

We perform numerical experiments that verify the desired properties of the
methods and the expected accuracy for the two-dimensional Poisson equation
and Helmholtz equation with variable coefficients.

In the next section, we present mathematical preliminaries related to the
boundary integral formulation. In section 3, we present the architecture of
the proposed neural network. In section 4, we discuss the training strategy
to learn the domain-independent Green’s function. In section 5, we discuss
the generalization of the learned Green’s function to different domain and
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boundary conditions. In section 6, we demonstrate the capability of the
neural network to learn known Green’s functions followed by learning the
Green’s function of variable coefficient PDEs. In section 7, we summarize
and discuss the outcome of the present study and future work.

2. Mathematical Preliminaries

The boundary integral method is widely used to solve elliptic boundary
value problems. Consider a scalar field u defined in a domain Ω with bound-
ary ∂Ω, an elliptic partial differential equation takes the form

Lxu(x) = f(x), ∀ x ∈ Ω, (1)

where Lx is an elliptic differential operator and f(x) is a source (forcing)
function. We use the notation Lx to specify the variable on which the opera-
tion is being performed. The above equation may be subjected to a Dirichlet
boundary condition

u(x) = gD(x), ∀ x ∈ ∂Ω, (2)

or a Neumann boundary condition

∂u(x)

∂ν
= gN(x), ∀ x ∈ ∂Ω, (3)

where ν is the outward normal to the boundary. The boundary may also be
subjected to Dirichlet on the part of the boundary and Neumann on the rest
of the boundary. A problem defined using eq. (1) and eq. (2) is known as
an interior Dirichlet problem. Similarly, a problem defined using eq. (1) and
eq. (3) is known as an interior Neumann problem. A similar kind of problem
may be defined for exterior domains and interfaces [41].

The fundamental solution G(x,y) of the PDE in eq. (1) satisfies

LxG(x,y) = −δ(x,y), ∀ x ∈ Ω, (4)

where y is the center of the function G. The fundamental solution is the
Green’s function on an infinite domain such that it satisfies the Sommerfeld
radiation condition(

x

|x|
,∇u(x)

)
− iκu(x) = o

(
1

|x|

)
, |x| → ∞, (5)
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where κ = 0 in the present case. The solution of eq. (1) with homogeneous
Dirichlet boundary condition is given by

u(x) = −
∫
Ω

f(y)G(x,y)dy, (6)

whereG(x,y) also satisfies the homogeneous boundary condition i.eG(x,y) =
0, ∀ x ∈ ∂Ω along with eq. (4). In the case of the non-homogeneous boundary
conditions, we use the following definitions and theorems from the potential
theory [41].

Definition 1. Let g be a continuous function defined on ∂Ω. The single
layer potential

ū(x) := −
∫
∂Ω

g(y)G(x,y)dS(y). (7)

Similarly, the double-layer potential

¯̄u(x) := −
∫
∂Ω

h(y)
∂G

∂νy
(x,y)dS(y), (8)

where h is a continuous function defined on ∂Ω, νy is the outward normal to
the boundary at y.

Theorem 1. Given a PDE of the form Lxu(x) = f(x), ∀ x ∈ Ω with a
non-homogenous boundary condition, the solution of the interior Dirichlet
problem is given by

u(x) =

∫
Ω

f(y)G(x,y)dy + ¯̄u (9)

with

lim
x→x−

o

u(x) = −1

2
h(xo) + u(xo), ∀ xo ∈ ∂Ω. (10)

where x−
o mean converging in the interior of Ω. Similarly, for the interior

Neumann problem, the solution is given by

u(x) =

∫
Ω

f(y)G(x,y)dy + ū (11)

with
lim
x→xo

u(x) = u(xo) ∀ xo ∈ ∂Ω. (12)
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We note that the G(x,y) in theorem 1 satisfies the homogenous boundary
condition on ∂Ω along with eq. (4). However, one can also evaluate the
solution using both the first layer and second layer potential

u(x) = −
∫
Ω

f(y)G(x,y)dy + ¯̄u− ū, (13)

where G is a domain independent Green’s function that does not require to
satisfy homogeneous boundary conditions. Furthermore, at the boundary,
we use the condition in eq. (10) irrespective of the type of the boundary
condition.

Traditional integral approaches require the analytical form of the Green’s
function to design quadratures. However, it is challenging to calculate an
explicit expression for the Green’s function, especially when the PDEs are
defined in a complex domain or have variable coefficients. To circumvent
this constraint, a kernel-free boundary integral methods have been proposed
[15, 16] and are widely used to solve variable coefficient PDEs. However,
this method does not produce any information about Green’s function of the
PDE. In the next section, we develop a neural network-based approach to
tackle the problem.

3. Boundary integral network architecture

Recently, Lin et al. [30] proposed Boundary integral Network (BINet),
where a known domain independent Green’s function of the PDE is used,
and the density function h or g in the definition 1 is learned using neural
networks. In our method, we do not use the analytical Green’s function
and use three distinct networks to learn G(x,y), h(x), and g(x) functions
using test functions. We call the proposed Boundary Integral Netwrok with
unknown Green’s function as BIN-G. We use G(x,y) ≡ G(x,xc), where xc

is the center of the Green’s function in the following discussion.
We consider an interior Neumann boundary value problem as shown in

eq. (1) with f(x) = 0 to simply the network architecture. In fig. 1, we
show a typical network that evaluates the single-layer potential, which is
the solution to the present problem. It takes the position as an input x
and produces the value of the field u(x) as an output. We generate the
coordinates {xb = (xb, yb)|xb ∈ ∂Ω} by discretizing the boundary of interest
using Nb points. The various layers involved in the network are shown as
follows:
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xb
1

xb
n

−

−

r1

rn

−b1KNNG(r1; Θ)

−bnKNNG(rn; Θ)

MLPg(x
b
1; θg)

MLPg(x
b
n; θg)

×

×

∑
u(x)

Figure 1: Network architecture of the BIN-G. Using the distance ri between x and xb
i

enforcing the symmetry of the Green’s function. The block highlighted in orange evaluates
a domain-independent Green’s function learned using a KNN.

1. The input are coordinates x ∈ Ω at which one desire to obtained the
solution.

2. The distance is calculated from all the boundary points {xb
1, . . . ,x

b
n} as

an intermediate step in r. We perform this step to ensure the symmetry
of the Green’s function while training. One can ensure symmetry by
employing a loss function that minimizes the interchanges of argument
of the Green’s function as well. Therefore, removing this step only
slows down learning and requires additional terms in the loss function.

3. The boundary points are fixed. We input the boundary points to the
multi-layer perceptron (MLP) network denoted by MLPg to evaluate
the density function g in the definition 1.

4. From the distance values r, the Green’s function value is calculated us-
ing a kernel-based neural network (KNN) denoted by KNNG discussed
in the next section.

5. In the next two steps, numerical quadrature is performed using the
evaluated Green’s and density function. We use a three-point linear
element and a four-point triangular element to perform numerical in-
tegration on the boundary and the volume, respectively.
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The mathematical expression for the network shown in fig. 1 is

u(x) = −
Nb∑
i

bi MLPg(x
b
i ; θg) KNNG(||x− xb

i ||; Θ), (14)

where bi are the integration weights, xb
i ∈ ∂Ω and θg and Θ are the learnable

parameters.
In the case of the Dirichlet boundary value problem, we use automatic

differentiation to evaluate the gradient of the Green’s function in the orange
block. The mathematical expression of this kind of network is given by

u(x) = −
Nb∑
i

ci MLPh(x
b
i ; θh) ni · ∇KNNG(||x− xb

i ||; Θ), (15)

where ci are the integration weights, θh are learnable parameters, ni are the
outward normal at xb

i ∈ ∂Ω, and the gradient is evaluated using automatic
differentiation.

Similarly, in the presence of a non-zero forcing function f(x), we add the
volume integration

∫
Ω
G(x,xc)f(xc)dxc after computing boundary integral.

We discretize the volume using Ni quadrature points. The mathematical
expression of this kind of network is given by

u(x) =

Ni∑
i

aif(xi)KNNG(||x− xi||; Θ)

−
Nb∑
i

bi MLPh(x
b
i ; θh) ni · ∇KNNG(||x− xb

i ||; Θ)

−
Nb∑
i

ciMLPg(x
b
i ; θg)KNNG(||x− xb

i ||; Θ),

(16)

where ai are the integration weights, xi ∈ Ω. Since we focus on learning a
domain agnostic Green’s function, we use the architecture defined in eq. (16)
following eq. (13) for all our test cases. In the next section, we discuss the
Green’s function network architecture.

3.0.1. Green’s function network architecture

In order to evaluate Green’s function for the elliptic operator Lx, we use
a radial basis function (RBF) kernel-based neural network (KNN) [42, 43].
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Any scalar function f defined in a domain Ω can be approximated using a
RBF kernel K as

f(xi) =
∑
j

wjK(xi; ζj, λj), (17)

where wj is the integration weights, ζj is the kernel center, and λj is the scal-
ing parameter. Therefore, we can approximate Green’s function asG(x,xc; Θ) =
KNNG(ri; Θ), where

KNNG(ri; Θ) =
∑
j

wjK(ri; ζj, λj), (18)

where ri = ||xi − xc||, and Θ = {w1, w2, ..., wn, ζ1, ζ2, ..., ζn, λ1, λ2, .., λn}
are the learnable parameters. Equation (18) ensures that G(x,xc; Θ) =
G(xc,x; Θ). We note that n is a hyper-parameter denoting the number of
approximating points (or particles). In fig. 2, we show the architecture of
the proposed network. Since we convert all coordinates into the distances r
from the center of the Green’s function, we use a one-dimensional kernel

K(ri; ζi, λi) = exp

(
−0.5

(
ri − ζi
λi

)2
)
. (19)

Since, the parameters λ and ζ has numerical origin, we can create a set of
values such that a high slope function near singularity can be learn fast.
We create n particles, exponential spaced in [0, 3.0] with a linear increase
of support radius in [0.001, 0.2]. The particles near zero are closely spaced
with the lowest support radius. In the next section, we discuss the training
process of all the networks in detail.

x

xc

− r

r

w1K(r; ζ1, λ1)

wnK(r; ζn, λn)

∑
G(x,xc)

Figure 2: KNN-based architecture to evaluate domain-independent Green’s function.
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4. BIN-G training methodology

In this section, we discuss the method used to train BIN-G to learn the
domain-independent Green’s function for a given elliptic PDE. As discussed
in section 2, the Green’s function satisfies eq. (4). Therefore, it is logical to
minimize the following loss,

min
Θ

||LxG(x,xc; Θ) + δ̃(x− xc)||2Ω, (20)

where δ̃ is an approximation of the Dirac delta function. Teng et al. [34]
proposed to use a Gaussian approximation for the Dirac delta and train the
NN to learn the solution like a traditional MLP network. However, Lin et al.
[30] showed that traditional MLPs are unable to converge for the Helmholtz
equation. In other words, the presence of Gaussian approximation prevents
the network from learning the desired slope near the singularity. In this
paper, we mitigate this issue by learning the slopes near singularity using
boundary integral formulation.

4.1. Green’s function training scheme

We note that the NN cannot learn an infinite slope. Furthermore, the
slope of the learned Green’s function will be zero at the singularity due
to continuity assured by the NNs. In fig. 3, we show a schematic plot for
the Dirac delta approximation and the derivative of the Green’s function.
Therefore, it is very difficult to find an approximation of the Dirac delta
such that it does not influence the Green’s function, has a zero slope at the
singularity, and has a very large slope close to the singularity. In order to
remedy this problem, we satisfy the PDE away from singularity on a 1D
domain for a large length. Additionally, we solve a boundary value problem
for two distinct test functions on a finite domain.

In the fig. 4, we show different sample spaces used in the training of the
Green’s function. In the sample space shown in blue, we obtain the loss due
to the PDE. Since the Green’s function learned are radially symmetric, we
can also obtain samples from a 1D domain shown in black color. Therefore,
we obtain samples from a one-dimensional domain Ω1D := [0, 3] to evaluate
the residue of the PDE. However, we ignore samples in Sα = {x|x − xc <
α, x ∈ Ω1D}, where α is a hyper-parameter set to 0.01. We assume xc = 0.0
in the 1D domain. The loss due to the PDE

LPDE = |LxKNNG(x,xc; Θ)|2 , (21)
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(a) Dirac delta function (b) Derivative of a typical Green’s function

Figure 3: Comparison of the approximation of the Dirac delta and the expected derivative
of the Green’s function at the singularity.

Figure 4: The sample space used in the training of the domain independent Green’s
function network. The domain used to compute the loss due to the PDE is a 1D domain
shown in black, representing the domain in blue for a 2D PDE (due to symmetry of the
Green’s function). The orange domain is used to compute loss due to boundary integral
equations.
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where x ∈ Ω1D − Sα, Θ are the learnable parameters for the KNN. The
function | • | is a discrete L2 norm given by√√√√ N∑

i

(•)2
N

, (22)

where N is the number of samples.
In a 2D domain, much smaller than the blue domain, we evaluate the

solution using the BIN-G as discussed in section 3. We use the test functions
ϕ1(x ≡ (x, y)) = sin(2πx) sin(2πy) and ϕ2(x ≡ (x, y)) = exp(−(x2 + 2y2 +
1)) in the domain Ω in orange in fig. 4. The boundary condition and the
forcing function can be obtained for both the test function using the domain
information and the PDE. We employ a circular domain with radius 0.5
centered at (0.5, 0.5). We sample N random points from the interior of the
Ω and compute the mean squared error for prescribed test functions. The
loss due to test function ϕ1

LBI1 = |(u(x; θ,Θ)− ϕ1(x)|2 , (23)

and due to test function ϕ2

LBI2 = |(u(x; θ,Θ)− ϕ2(x)|2 , (24)

where u(xi) is evaluated using the BIN-G, θ = {θg, θh} and Θ are the learn-
able parameters for the MLP and KNN, respectively.

Combining all the component, the total loss used to train the BIN-G
network is given by

L(θ,Θ) = βLPDE + γ(LBI1 + LBI2) + ηLN , (25)

where β = 1.0, γ = [0.1, 1.0], and η = [0.01, 0.1]. We define

LN = |KNNG(x,xc; Θ)|2 + |MLPh(xb; θh)|2 + |MLPg(xb; θg)|2 , (26)

a loss normalization of the function magnitudes. It ensures that the magni-
tude of the functions is minimal. This cannot be achieved by the usual L2

normalization where the loss due to the magnitude of the parameter squared
is minimized due to the presence of the KNN in the network, which assumes
a large value of the parameters near the singularity. We note that the con-
tribution of LN is very low compared to other loss functions.
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We train the NNs using Adam optimizer with a learning rate of 10−4 for
the 105 epochs unless stated otherwise. Since the learned Green’s function
is radially symmetric, the 1D domain Ω1D captures a larger domain with a
much smaller number of samples. This reduces the training time significantly.
We note that the Green’s function training simultaneously trains the density
functions h and g as well. However, one can readily employ the learned
Green’s function for any other domain and boundary condition using the
method described in the next section.

5. Generalization to other domain and boundary conditions

In this section, we use the learned Green’s function to obtain the solu-
tion to a problem with the same governing PDE but different domain and
boundary conditions. We note that the Green’s function is not in the exact
analytical form, but rather parameterized by a neural network. Since it is
a free-space Green’s function, it can be employed to different domain and
boundary conditions using eq. (13).

In order to learn the PDE solution for a new domain and boundary con-
ditions, we only need to learn the density functions MLPh and MLPg in
eq. (16), which are parameterized by multilayer perceptron neural networks.
In the following, we describe the training of neural networks (MLPh and
MLPg) for a interior Dirichlet problem. We use theorem 1 to obtain the loss
function

L(θ) = |gD(x)− (u(x, θ) + 0.5h(x, θ))|2, ∀ x ∈ ∂Ω, (27)

where x is the input, gD is the given Dirichlet boundary condition and θ is
the set of trainable parameters in the MLP in Figure 1.

In algorithm 1, we show the pseudo-code for the training procedure us-
ing learned Green’s function. We need samples from the boundary only.
In the load_nn_network, we load a trained KNN network which evaluated
the GF for the given coordinates and center. In initialize_h_network,
and initialize_g_network, we initialize the MLPh and MLPg network with
uniformly random values. The while loop is the traditional training pro-
cess where initialize_grad resets the gradient values to zero, and the
test_function(x, y) are solution on the boundary for an interior Dirich-
let problem. The eval_sol is the BIN-G network that utilizes the learned
GF network and evaluates the PDE solution. We compute the loss in eq. (27)
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in the variable loss, and use the Adams optimizer in optimizer_step as was
done in the learning of the Green’s function.

Algorithm 1: Pseudo-code to learn density function employing a
leaned Green’s function.
Input: {{(x, y)|x, y ∈ ∂Ω}
Result: trained KNNG network
n_train = 105;
KNN_G = load_knn_network();
MLP_h = initialize_h_network();
MLP_g = initialize_g_network();
while i < n_train do

initialize_grad();
u = eval_sol(x, y, KNN_G, MLP_h, MLP_g);
u_on_boundary = u + MLP_h(x, y)/2;
loss = mean_squared(u_on_boundary - test_function(x, y));
optimizer_step(loss, MLP_h, MLP_g, ...);
i++;

end

The proposed method is a straightforward application of boundary in-
tegral formulation. However, one possible future endeavor is to express the
boundary using a parameterized curve following the method proposed by
Mezzadri et al. [44], and train the parameterized network using samples from
different domain shapes, resulting from different curve parameters.

6. Results and discussion

In this section, we demonstrate the applicability of the proposed method
to solve various elliptic partial differential equations. We first learn the
Green’s function for the Laplace equation. We then learn the Green’s func-
tion for the Helmholtz equation for different k values. Finally, we learn the
Green’s function of a variable coefficient elliptic PDE. For all the test cases,
we readily employ the trained Green’s function network to train the density
functions MLPg and MLPh to learn the solution on a different domain and
boundary conditions. In order to verify the learned GF, we use a new test
function

u(x ≡ (x, y)) = exp(−x) cos(y) + exp(−y) sin(x), (28)
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on a square-shaped domain of unit length for all the test cases unless stated
otherwise. We use the test function in eq. (28) to obtain the forcing func-
tion and boundary condition and then use that as prescribed data to the
network to evaluate the test function. All the NN present in this work are
implemented using the open source pytorch [45] package.

For all test cases, we consider the KNNG network discussed in section 3.0.1
with 400 approximation points, which results in 1200 parameters to be trained.
On the testing data, for all the results, we report relative L2 error

L2 =

(∑N
i (f(xi)− fo(xi))

2∑N
i (fo(xi))2

) 1
2

, (29)

where N is the number of test points, fo is the known test function and
f is the value obtained using the BIN-G. We run all the simulations on a
“Apple M2 Ultra Chip”. It takes 5.7 hours to train the Green’s function for
a variable coefficient PDE. However, for the constant coefficient PDEs since
we use a 1D sample space, it learns the GF in 3 hours. Furthermore, for all
the cases it takes approximately 9.5 minutes to retrain the density functions
using the learned GF.

6.1. Laplace equation

In this section, we first solve the Laplace equation. The fundamental
solution of the Laplace equation is given by G(x,xc) = 1/2π ln(|x−xc|). We
consider a test function in eq. (28) such that

∇2u(x) = f(x), (30)

where f(x) = 0. In fig. 5a, we plot the learned Green’s function against the
analytical result. The learned Green’s function is slightly shifted. However,
the shift does not affect the solution in the case of the Laplace equation. We
employ the learned Green’s function to train the density function networks
MLPh and MLPg for the test function in eq. (28). In fig. 5b, we show the
L2 error with the number of epochs showing convergence when an analytical
and a learned Green’s function is employed in the BIN-G. The error in the
test data shows a similar trend for a learned Green’s function compared to
an analytical Green’s function.

We next consider a Laplace equation with variable coefficient

∇ · (σ(x)∇u(x)) = f(x), (31)
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(a) Green’s function (b) L2 error on test data

Figure 5: Comparison of the learned and analytical Green’s functions and convergence
of L2 error in the test data while training density function using learned and analytical
Green’s function of Laplace equation.

(a) Green’s function (b) L2 error on test data

Figure 6: Learned Green’s function and the L2 error on test data while training using
learned Green’s function on different domain shapes for the Laplace equation with variable
coefficient.
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(a) Learned distribution (b) Exact distribution

(c) Learned distribution (d) Exact distribution

(e) Learned distribution (f) Exact distribution

Figure 7: The contour of the learned and expected field using BIN-G for the Laplace
equation with variable coefficient.
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(a) k=1 (b) k=8

Figure 8: Learned Green’s function compared with the analytical Green’s function for the
Helmholtz equation.

where σ(x) = 1.5 + 0.5(sin(x) + cos(y)). We train the Green’s function
network using the same methodology and use the learned Green’s function
to learn density functions for new domain shapes and test function in eq. (28).
We consider 3 shapes of the domain viz. rectangular, circular, and star shape.
In fig. 6, we plot the learned Green’s function and the convergence of the L2

error on test samples from the domains. The L2 error is within 6%. In
case of a rectangular domain the errors are higher due to corner that have
a discontinuity in the boundary normals. In fig. 7, we plot the test function
learned and exact distribution. The learned contour are close to the exact
distribution.

6.2. Helmholtz equation

In order to show the capability and ensure the correctness of the proposed
method, we solve the Helmholtz equation for real values. We first learn the
Green’s function for the Helmholtz equation

∇2u(x) + k2u(x) = f(x), (32)

where k is the eigenvalue. We choose k = {1, 8}. We first train the network
to learn the Green’s function for the PDE and then employ it to learn the
solution using BIN-G for the test function in eq. (28).

In fig. 8, we show the comparison of the learned Green’s function with
respect to the analytical form. The learned Green’s function shows a close
match with the analytical form for k = 8 compared to k = 1. In fig. 9, we
show the comparison of the relative L2 error in the test data while training the
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(a) k=1 (b) k=8

Figure 9: L2 error on test data using BIN-G with learned Green’s function and analytical
Green’s function for the Helmholtz equation.

density function using an analytical Green’s function and the learned Green’s
function. The learned Green’s function shows a trend close to the error using
an analytical Green’s function in the BIN-G. In the case of k = 1, the gap
between the learned Green’s function and the actual Green’s function is high.
However, the L2 error while learning density function is close to when an
analytical Green’s function is used. This shows that the lower eigensolution
are more likely to converge to wrong solution. We suggest to use a larger
domain for lower eigenvalue PDEs.

We also consider a variable coefficient Helmholtz equation with constant
eigenvalue given by

∇ · (σ(x)∇u(x)) + k2u(x) = f(x), (33)

where we set k = 4. We learn the Green’s function for the above PDE using
the present method and employ it to learn the solution for the test function
as done in previous test cases. However, we consider different domain shapes
viz. rectangular, ellipse, and star. In fig. 10, we plot the learned Green’s
function and the relative L2 error in the test data while training for different
domains. As observed in the case of the Laplace equation, the errors in the
case of the rectangular domain is high due to corners. The error in the case
of Elliptical and star shaped domain are within 5%. These errors can be
improved by using a better quadrature, larger domain, and more number
of source-test function pairs. In fig. 11, we plot the learned solution and
exact distribution for different domains. The higher error in the case of the
rectangular domain is visible by higher values in the distribution. However,
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(a) Green’s function (b) L2 error on test data

Figure 10: Learned Green’s function and the L2 error on test data while training using
learned Green’s function on different domain shapes for the Helmholtz equation with
variable coefficient and k = 4.

in the case of the other two domains the contours are close to the expected
distribution.

6.3. PDE with variable coefficient

In this section, we solve a variable coefficient elliptic PDE [16] given by

∇ · (σ(x)∇u(x))− κ(x)u(x) = f(x), (34)

where σ(x, y) = 1.5 + 0.5(sin(x) + cos(y)), and κ(x, y) = 20 + exp(1.5x+
1.8y). We note that an analytical form of Green’s function for variable coef-
ficient PDEs are not known. We learn the Green’s function for the PDE in
eq. (34) as done in previous test case. We use the learned Green’s function
to solve PDE for an arbitrary test function on different domain shapes.

In fig. 12a, we plot the learned Green’s function. We plot the L2 error
in the test points using the learned Green’s function for different domain
shapes as done in previous test cases. Since the κ value is variable it involves
lower eigenvalues as well. Therefore, the errors are higher compared to other
variable coefficient test cases. In the case of the rectangular domain, the
errors are higher due to corners compared to other domain shapes. In fig. 13,
we plot the learned solution with the exact distribution. Similar to other test
case, the rectangular domain shows a different contour line and magnitude.
However, in case of smooth domains the contours are close to the exact
distribution.
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(a) Learned distribution (b) Exact distribution

(c) Learned distribution (d) Exact distribution

(e) Learned distribution (f) Exact distribution

Figure 11: The contour of the learned field using BIN-G and the error distribution for the
Helmholtz equation with variable coefficient and k = 4.
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(a) Green’s function (b) L1 error on test data

Figure 12: Learned Green’s function and the L2 error on test data while training using
learned Green’s function on different domain shapes for the elliptical equation with variable
σ and κ.

7. Conclusions

In this paper, we propose a novel boundary integral network with un-
known Green’s function referred to as BIN-G. In the BIN-G, we employ
a radial basis function (RBF) kernel-based neural network to evaluate the
Green’s function, and multi-layer perceptron networks to evaluate the den-
sity functions. The parameters of the RBF-based Green’s function network
viz. particle position and smoothing length are closely related to the sam-
pling space. Therefore, a careful initialization of the particle position and
smoothing length offer faster learning near the singularity of the Green’s
function. We use the spherical symmetry feature of the domain-independent
Green’s function in our network enabling us to learn Green’s function using
a one-dimensional sample space.

We train the neural network by simultaneously minimizing the residual
of the PDE and the mean-squared error of the solution using the boundary
integral equations. We use a much larger sample space on which PDE residual
is minimized, compared to the domain on which solution to prescribed test
functions is learned using the BIN-G. Therefore, the learned Green’s function
is defined for a very large space and is not constrained by the homogeneous
boundary condition. Hence, it can be readily employed for any domain shape,
boundary condition, and forcing function.

The efficacy of the proposed method to solve PDEs, for which the ground
truth Green’s functions are known, has been demonstrated. We use the
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(a) Learned distribution (b) Exact distribution

(c) Learned distribution (d) Exact distribution

(e) Learned distribution (f) Exact distribution

Figure 13: The contour of the learned field using BIN-G and the error distribution for the
Helmholtz equation with variable variable σ and κ.
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Laplace and Helmholtz equations to validate our method. We apply the
method to learn domain-independent Green’s function of variable coefficient
PDEs, for which analytical forms of Green’s function are not available. We
demonstrate the applicability of the proposed network by solving a different
problem on different domain shapes using the learned Green’s function.

It is possible to enhance the obtained accuracy through the implementa-
tion of an adaptively sampled domain, strategically placing refined samples in
proximity to the boundary. This approach not only refines training around
singularities but also mitigates quadrature errors. However, these modifi-
cations give rise to convergence challenges, which can be addressed in the
future. The proposed method can be extended to solve interface boundary
problems as well. In the future, we would like to extend the proposed method
to solve moving interface boundary problems.
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