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The weakly compressible smoothed particle hydrodynamics (WCSPH) method has been employed to simulate various

physical phenomena involving fluids and solids. Various methods have been proposed to implement the solid wall,

inlet/outlet, and other boundary conditions. However, error estimation and the formal rates of convergence for these

methods have not been discussed or examined carefully. In this paper, we use the method of manufactured solution

(MMS) to verify the convergence properties of a variety of commonly employed of various solid, inlet, and outlet

boundary implementations. In order to perform this study, we propose various manufactured solutions for different

domains. On the basis of the convergence offered by these methods, we systematically propose a convergent WCSPH

scheme along with suitable methods for implementing the boundary conditions. We also demonstrate the accuracy of

the proposed scheme by using it to solve the flow past a circular cylinder. Along with other recent developments in

the use of adaptive resolution, this paves the way for accurate and efficient simulation of incompressible or weakly-

compressible fluid flows using the SPH method.

I. INTRODUCTION

The Smoothed particle hydrodynamics (SPH) method is

widely used to solve fluid dynamics problems1. One of the

widely used variants of the SPH method is the weakly com-

pressible SPH (WCSPH). In WCSPH, the pressure is ob-

tained using an artificial equation of state2. Many WCSPH

schemes viz. transport velocity formulation (TVF)3, entrop-

ically damped artificial compressibility (EDAC) SPH4, δ+-

SPH5, and dual-time SPH6 have been proposed in the last

decade. Recently, Negi and Ramachandran 7 introduced sev-

eral SPH schemes and formally showed the convergence to be

second order. However, they only considered domains with

periodic boundaries. For these schemes to be useful in practi-

cal simulation it is essential to also have second order conver-

gent boundary condition implementations.

In the context of SPH, accurate implementation of bound-

ary conditions is a grand challenge problem8. Many authors

(See the review by Violeau and Rogers 9 ) have proposed vari-

ous methods to implement solid boundary conditions in SPH.

Some authors3,10–12 use few layers of fixed solid (boundary)

particles and use different methods to extrapolate the prop-

erties from fluid to the solid particles. Colagrossi and Lan-

drini 13 proposed the creation of solid particles by reflecting

the fluid particles about the solid-fluid interface and retain-

ing the properties. Marrone et al. 14 used fixed ghost particles

to implement the boundary condition wherein a reflection of

these ghost particles about the solid-fluid interface are used to

evaluate properties on the ghost particles. Recently, Fourtakas

et al. 15 proposed to use a dynamically generated local stencil

for the particles near the boundary. Some authors16–19 propose

a)Corresponding author

to use a single layer of particles to represent the solid bound-

ary and use methods to correctly evaluate the forces. Oth-

ers like Ferrand et al. 17 proposed semi-analytical methods to

compensate for the loss of kernel support near the boundary.

For the case of open boundaries, the use of a weakly com-

pressible formulation poses unique problems since pressure

waves travel with an artificial speed of sound. These waves

must pass through the open boundaries without reflecting into

the domain. Federico et al. 20 propose a do-nothing kind of

outlet where the fluid particles are converted from fluid to out-

let particles while retaining their properties. Tafuni et al. 21

propose to mirror the inlet and outlet particles to calculate

properties and its gradient. The inlet and outlet properties

are set using a Taylor series expansion from the respective

ghost particle to the inlet/outlet particle. Recently, Negi, Ra-

machandran, and Haftu 22 proposed a modified version of the

method proposed by Lastiwka, Basa, and Quinlan 23 where a

time-averaged value is passed to the inlet/outlet and properties

derived from the characteristics of the flow are added using a

Shepard interpolation24. Many authors11,22,25 compared vari-

ous boundary condition implementations qualitatively without

performing a convergence study. Furthermore, in the context

of SPH, the errors are often shown qualitatively by comparing

the results of the simulation3–5.

In this paper, we verify the convergence of various bound-

ary condition implementations that have been proposed and

identify second-order convergent methods that are suitable for

use for the most common solid wall, as well as inlet and outlet

boundary conditions. In order to identify a convergent bound-

ary implementation, we use the method of manufactured so-

lutions (MMS) introduced by Negi and Ramachandran 26 for

SPH. In MMS, a manufactured solution (MS) is created such

that the boundary condition is satisfied at the boundary in-

terface of interest. Since the MS is not a solution of the

weakly compressible Navier-Stokes (NS) equation, we obtain
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 2

a residue on substituting the MS in the NS equations. This

residue is added as a source term to the NS equation in the

scheme and it is expected that the solver will recover the MS

as the solution. In order to test the boundary condition, one re-

quires a convergent scheme in the bulk of the fluid for which

we use the second-order convergent scheme proposed by Negi

and Ramachandran 7 which is further verified using MMS in

26.

We believe that this is the first time that second order con-

vergent boundary condition implementations have been iden-

tified and verified in the context of WCSPH. However, the im-

plementation of these methods to solve a real-life problem is

non-trivial. In view of that, we propose a complete algorithm

and demonstrate the accuracy by solving a simple flow past a

circular cylinder problem. This shows that the resulting SPH

scheme can be applied to a variety of problems, paving the

way for SPH to be an effective alternative to traditional finite

volume based codes especially when combined with some re-

cent advancements of adaptive resolution SPH schemes27,28.

In the next section, we discuss the SPH method and the

second-order discretizations. We then discuss various solid

boundary condition implementations, viz. pressure Neumann,

slip and no-slip in section III, and open boundary conditions,

viz. inlet and outlet in section IV for both pressure and veloc-

ity. In section V, we discuss the MMS in general and its con-

struction for specific boundary condition. We compare all the

boundary condition implementation in the section VI followed

by conclusion in section VIII. All the results in this manuscript

are reproducible, and the source code for the simulations can

be found at https://gitlab.com/pypr/mms_sph_bc.

II. THE SPH METHOD

Chorin 29 proposed the weakly-compressible method to

solve fluid flow problems. In the weakly-compressible

method, we solve the governing equations given by

dρ

dt
=−ρ∇ ·u

du

dt
=−

∇p

ρ
+ν∇2u,

(1)

where ρ , u, and p are the density, velocity, and pressure of the

fluid, and ν is the dynamic viscosity of the fluid. Additionally,

we use an artificial equation of state (EOS) to link the pressure

with the density. In SPH, we use the EOS given by

p = c2
o(ρ −ρo), (2)

where ρo and co are the reference density and artificial speed

of sound, respectively. In this paper, we use the L-IPST-C

scheme proposed by Negi and Ramachandran 7 to discretize

the governing equations. The continuity equation is dis-

cretized as

dρi

dt
= ρi ∑

j

(u j −ui) · ∇̃Wi jω j, (3)

where ∇̃Wi j is the kernel gradient corrected using the correc-

tion proposed by Bonet and Lok 30 , and ω j =
1

∑ j Wi j
is the

numerical volume. The function Wi j = W (xi − x j,hi j) is a

smoothing kernel used in SPH, where xi is the position of the

destination particle, x j is the position of the source particle,

and hi j = 0.5(hi +h j) is the average smoothing radius31. The

momentum equation is discretized as

dui

dt
= ∑

j

(

(pi − p j)

ρi

∇̃Wi jω j +ν(∇u j −∇ui) · ∇̃Wi jω j

)

,

(4)

where ∇ui = ∑ j(u j −ui)⊗ ∇̃Wi jω j. The particles are shifted

using the iterative particle shifting technique proposed by

Huang et al. 32 after every 10 timesteps. The particle prop-

erties are updated after shifting using first-order Taylor series

approximation given by

φ(x̃) = φ(x)+(x̃−x)∇φ(x), (5)

where x̃ is the position after shifting, x is the position before

shifting, and φ is any fluid property. We use a second-order

Runge-Kutta time integration scheme to integrate the continu-

ity and momentum equations. Since we are interested in the

spatial convergence of the scheme, we use a constant timestep

corresponding to the highest resolution, i.e. 500×500 for all

the simulations given by

∆t =
h

co +U
=

1.2×1/500

20+1
= 0.00012 sec. (6)

We assume a maximum velocity U = 1m/s and corresponding

speed of sound 20m/s for all our simulations.

In order to apply boundary conditions, many authors have

proposed different methods to implement Neumann pressure,

slip, and no-slip boundary conditions in SPH. The main ob-

jective is to extrapolate velocity and pressure from the fluid

particle to the ghost particle representing solid such that the

desired condition is satisfied. In the next section, we discuss

various boundary conditions in brief.

III. SOLID BOUNDARY CONDITIONS

In this section, we discuss various boundary condition im-

plementations widely used in the SPH literature. We classify

these implementations on the basis of the requirement of the

secondary particle arrays. In SPH, two types of particles are

used to implement boundary conditions, viz. ghost, and virtual

particles. The ghost particles carry the extrapolated properties

from the fluid and influence the fluid particles. Whereas the

virtual particles are used to evaluate some intermediate value

of a property from fluid and do not affect the actual flow.

Many authors16,17,33 have proposed different approaches

where a single layer of ghost particles are used. In order to as-

sess the effect of the number of layers on the accuracy of the

second order accurate gradient and Laplacian discretization,

we perform a simple numerical test. In this test, we consider

a finite 2D domain of size 1m×1m. We discretize the domain
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 3

using particles at different resolutions, and initialize various

properties using

u(x,y) = sin(4π(x+ y)),

v(x,y) = cos(4π(x+ y)),

p(x,y) = sin(4πx)+ sin(4πy).

(7)

We compute the SPH approximation of the pressure gradi-

ent and Laplacian of velocity on the particles using the dis-

cretization in eq. (4). Since the particles near the boundary do

not have complete support, they will have higher errors com-

pared to the inner particles. We compute the L1 error in the

approximation using

L1(Np) =
∑

Np

j | f j(x)− f̃ (x)|

Np

, (8)

where f (x) is the computed value and f̃ (x) is the actual value,

Np are the number of particles in the domain (1− 2n∆x)×
(1−2n∆x), where n is the number of layers skipped from each

side. In fig. 1, we plot the L1 error for the particles skipping n-

layers of particles from the outermost boundary for pressure

gradient and Laplacian approximations. We note that both

the discretization used are second-order accurate in a periodic

domain7. However, we observe that the pressure gradient is

second-order accurate even when zero layers of particles are

surrounding the domain of interest. Whereas, for the Lapla-

cian approximation, we require at least 2 layers of particles.

Since all the second-order accurate formulations for Lapla-

cian approximation require gradient on all the neighboring

particles7 therefore the requirement for the number of neigh-

boring particles is double to that in the case of the gradient

approximation for the second-order accurate convergence.

This numerical test shows that the boundary implementa-

tion which uses a single layer of particles is bound to have

error in Laplacian approximation resulting in an inaccurate

solution irrespective of having an accurate boundary condi-

tion implementation. Furthermore, since all the second or-

der viscosity formulations require the evaluation of gradient

on the boundary particle7, we do not pursue the implementa-

tion of boundaries based on the local point symmetry method

in15,34,35 for the no-slip boundary condition. The various solid

boundary implementations considered are as follows:

A. Using a single layer of ghost particles on the boundary
surface

1. With virtual particles

In these methods, only one layer of particles are used on the

boundary surface. Marongiu, Leboeuf, and Parkinson 33 pro-

posed a characteristics-based evolution equation for pressure

update at these boundary particles are given by

dρ

dt
= co

∂ρ

∂n
−ρ

∂un

∂n
−

ρg ·n

co

(9)

where n is the normal of the boundary surface pointing into

the fluid. In order to evaluate the gradient at the bound-

ary point, five-point finite difference approximation is used.

These five points are generated along the normal of the bound-

ary particle at a spacing equal to the average particle spacing

represented by black point in fig. 2 for a single particle. The

values of the properties at these black points are evaluated us-

ing Shepard interpolation24.

2. Without virtual particles

Hashemi, Fatehi, and Manzari 16 proposed methods to im-

plement pressure and no-slip boundary conditions using one

layer of boundary particles on the surface. However, they do

not use any extra set of elements to derive the values on the

boundary elements denoted by red particles in the fig. 2. In

order to satisfy the no-slip boundary condition the velocity

of the red particles is kept the same as the velocity of the

solid boundary. Whereas, for pressure boundary implemen-

tation, momentum balance is performed along the normal of

the boundary surface given by

∇p

ρ
·n =−

du

dt
·n+

µ∇2u

ρ
·n+g ·n, (10)

where n is the normal of the boundary surface pointing into

the fluid. The eq. (10) is discretized using the second-order

consistent approximation to obtain the pressure at ith solid

boundary particles are given by

pi =

(

p j

ρi
∇̃Wi jω j

)

·ni −
〈

− du
dt
·n+ µ∇2u

ρ ·n+g ·n
〉

i
(

1
ρi

∇̃Wi jω j

)

·ni

. (11)

B. Using multiple layers of ghost particles outside boundary
surface

1. With virtual particles

Marrone et al. 14 proposed a method where fixed virtual

particles are generated by reflecting the ghost particles about

the interface. The created particles are illustrated in the fig. 3,

where red crosses are the virtual particles and red particles on

the right represent the ghost particles. The properties on the

ghost particles are set as ρg = ρv, pg = pv, and the velocity is

set according to the slip or no-slip condition required, where

∗g represent the property value on ghost particle and ∗v repre-

sent the property value on the corresponding virtual particle.

In case of slip, the velocity normal to the wall is reversed,

whereas in case of no-slip, the velocity is set negative of the

value on the corresponding virtual particle. The properties on

the virtual particles are evaluated using

fi = ∑
j

f jW̃i jω j, (12)

where f∗ is the desired property, ω j is the truncated volume

of the fluid particles and W̃i j is the kernel corrected using the
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 4

FIG. 1. L1 error in pressure gradient (left) and Laplacian (right) approximation with change in the skipped number of layers.

FIG. 2. Arrangement of ghost and virtual particles for given fluid

particle denoted by blue circles. The dashed line is the boundary sur-

face, red particles are ghost (solid) particles. The black dots are gen-

erated to evaluate gradient using finite difference at the red boundary

points.

method by Liu and Liu 36 . The sum j is taken over all the fluid

particles in the support of the kernel,

2. Without virtual particles

In SPH literature, most of the methods for boundary con-

dition implementation use multiple layers of ghost particle

such that the kernel has full support. Takeda, Miyama, and

FIG. 3. Arrangement of ghost and virtual particle for given blue fluid

particles and solid boundary shown by dashed line. The red circle on

the right are the ghost particles, and the red crosses are created by

reflecting the ghost about the interface.

Sekiya 10 proposed to extrapolate the properties using a linear

interpolation depending upon the distance of the ghost par-

ticle from the nearest fluid particle as shown in fig. 4. The

extrapolated velocity is given by

u j =−ui

r j − ro

ro − ri

, (13)

where r j − ro and ro − ri are the distances along the normal

from the boundary for jth ghost and ith fluid particle, respec-

tively. We select the nearest fluid particle for a particular ghost
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 5

FIG. 4. Arrangement of particles for the method proposed by Takeda,

Miyama, and Sekiya 10 . The ghost particles are shown in red, and the

fluid are shown in blue color particles. The value on the red particles

are interpolated using the nearest fluid particle along the normal of

the boundary surface.

particle along the normal of the boundary.

Randles and Libersky 12 proposed a boundary condition for

pressure. The prescribed value is assigned to the ghost parti-

cles in red and the values on the light blue fluid particles as

shown in fig. 5 are set such that the desired condition is satis-

fied. The value on light blue fluid particles is given by

pi = pbc +
∑ j∈I(p j − pbc)Wi jω j

1−∑ j∈B Wi jω j

, (14)

where I is the set of blue particles, B is the set of red particle,

and pressure is evaluated at each ith light blue particle shown

in fig. 5.

Adami, Hu, and Adams 37 proposed the method where

Shepard interpolation is employed to extrapolate properties

from fluid to ghost particles. The property at a ghost parti-

cle is given by

fi =
∑ j f jWi j

∑ j Wi j

, (15)

where sum j is over all the fluid particles in the support of the

kernel as shown by red dashed circle in fig. 5, at the ith ghost

particle. Furthermore, Esmaili Sikarudi and Nikseresht 38 pro-

posed to perform a first order accurate extrapolation to evalu-

ate properties on ghost particles.

Colagrossi and Landrini 13 proposed to mirror the fluid par-

ticles near the solid interface, about the interface to generate

ghost particles as shown in fig. 6. These ghost particles carry

the velocity of opposite sign to implement no penetration. The

value of pressure and density is kept the same. In order to im-

plement this method, we create new particles for solids from

the fluid particles before each time step.

FIG. 5. Arrangement of particles for the method proposed by Ran-

dles and Libersky 12 , and Adami, Hu, and Adams 37 for the fluid par-

ticles in blue and boundary interface shown by dashed line. The red

circles on the left represents the ghost solid particles. The property of

light blue fluid particle is manipulated to satisfy boundary condition.

FIG. 6. Arrangement of particles for the method proposed by Cola-

grossi and Landrini 13 for the fluid particles in blue, and boundary

represent by the dashed line. The ghost particles in red representing

solid are created by the mirror reflection about the interface.

IV. OPEN BOUNDARY CONDITIONS

Open boundary conditions are required to simulate a wind-

tunnel kind of simulation in SPH. It consist of an inlet from

where the particles are added to the domain, and an out-

let from where the particles exits the domain as shown in
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 6

fig. 7. The particles added to the domain should have pre-

scribed inlet velocity and should not introduce any artifacts

in the flow whereas the outlet should remove particles from

the flow without affecting the flow. Since we use a weakly-

compressible scheme, pressure waves are inevitable. There-

fore, the inlet/outlet must have non-reflecting property along

with adherence to the boundary condition. In fig. 7, we show a

schematic arrangement of the inlet, fluid, and outlet domains.

The dashed line in between different regions are the bound-

ary interfaces. The inlet/fluid particles are converted to flu-

id/outlet particles once they cross the corresponding interface.

Many authors7,20,21,23 have proposed different methods to im-

plement inlet/outlet boundary condition in SPH. Open bound-

ary condition implementations considered in this paper are as

follows:

A. Do-nothing

Federico et al. 20 proposed the method to implement out-

let boundary where the properties of the fluid particles cross-

ing the fluid-outlet interface are fixed in time. Therefore, the

particle, after crossing the interface, advects with a constant

velocity.

B. Mirror

Tafuni et al. 39 proposed a method applicable to both inlets

and outlets. The properties from the fluid are stored on the vir-

tual particles generated by reflecting the inlet/outlet particles

about the interface as shown in fig. 8. The desired property

and its gradient are evaluated for each mirror particle using

a first-order consistent approximation. From the mirror par-

ticle, the property of the corresponding outlet/inlet particle is

evaluated using

fo = fi −∆xom∇ fi, (16)

where fi and ∇ fi are the properties on the mirror particle and

xom is the distance between the outlet and mirror particle. In

addition to this method, we test the convergence of the method

when the Taylor series correction is not applied such that the

eq. (16) is simplified to

fo = fi. (17)

We refer to this method as simple-mirror.

C. Characteristics

Lastiwka, Basa, and Quinlan 23 proposed a non-reflecting

inlet and outlet boundary implementation using the method of

characteristics. The characteristics of the flow are given by

J1 =−c2
o(ρ −ρre f )+(p− pre f ),

J2 = ρco(u−ure f )+(p− pre f ),

J3 =−ρco(u−ure f )+(p− pre f )i,

(18)

where ρre f , ure f , and pre f are the reference density, velocity,

and pressure. These characteristics are extrapolated to the in-

let/outlet particles, and the properties are calculated using the

extrapolated characteristics are given by

ρ = ρre f +
1

c2
o

(

−J1 +
1

2
J2 +

1

2
J2

)

,

u = ure f +
1

2ρco

(J2 − J3) ,

p = pre f +
1

2
(J2 + J3) .

(19)

In order to implement the inlet boundary J1 and J2 should be

set zero and J3 must be extrapolated from the fluid to the inlet

particles. Whereas, for outlet J1 and J2 are extrapolated from

the fluid to the outlet, and J3 is set to zero. Recently, Negi,

Ramachandran, and Haftu 22 , proposed to obtain the reference

value of the properties by taking a time average of properties

when the acoustic intensity of the particle is below some pre-

scribed value. This reference value is determined based on the

inlet velocity. We refer to this method as hybrid method.

In the next section, we discuss the procedure one should

follow for the construction of manufactured solution in the

method of manufactured solutions to test boundary condition

implementation in the context of SPH.

V. METHOD OF MANUFACTURED SOLUTIONS

It is of utmost importance that the discretization and ap-

proximations employed in a solver are of the desired accu-

racy. Both verification and validation play an essential role

to determined the correctness of a solver. In validation, we

test whether the intended physics modeled by the differential

equation converges as required. Whereas, in verification, we

determine whether the discretization of various terms in the

governing equation are coded correctly to reflect the intended

rate of convergence. The MMS is a verification technique

widely used for the verification of finite volume method40,41

and finite element method42 codes. The MMS can also be

used to determine specific terms causing a lower order of con-

vergence or if the code has a mistake. Recently, Negi and

Ramachandran 26 proposed procedures to apply MMS in the

context of SPH. They show various methods to find coding

mistakes as well as procedures to obtain manufactured so-

lution (MS) to verify boundary condition implementation at

straight boundaries.

In the MMS, we substitute an MS to the governing partial

differential equations to obtain a residue. For example, for an

MS of the form ũ(x,y,z, t), and governing equation Lu = g,

where L is an operator and g is a source term, we obtain

R= Lũ−g (20)

as the residue. We use this residue as a source term in the

solver to obtain the MS from the solver. In SPH, the source

term can be easily applied to a particle by just substituting the

value of the coordinates in the source function. We solve the

equations using the solver on a domain with fluid and solid
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 7

FIG. 7. Schematic of the arrangement of fluid with the inlet and outlet particles. The top and bottom are supported by solid particles not shown

in the figure.

FIG. 8. Schematic of the arrangement of fluid with the inlet and outlet particles and their corresponding virtual particles are shown in light red

and red, respectively.

particles. Since we use a second-order convergent scheme

to solve the fluid flow, the errors are generated due to the

boundary condition implementations only. Therefore, the er-

ror at various resolutions shows the rate of convergence of the

boundary condition implementation.

In this paper, we construct various MS such that it satis-

fies the boundary condition on different domain shapes. We

take the following steps in order to construct an MS for the

boundary c(x,y) = 0:

1. Construct a base MS such that it satisfies the general

requirement of MMS26 as follows.
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 8

• The MS must be differentiable up to the highest

order present in the governing equations.

• The MS must satisfy the required physics of the

governing equation, for example, if the solver re-

quires the density to be continuous, the MS must

have continuous density.

• It must not prevent the successful completion of

the solver.

• It must be bounded in the domain of interest.

2. In the context of SPH, we additionally require the ve-

locity field to be non-solenoidal26.

3. Modify the property of interest such that the boundary

condition at c(x,y) = 0 is satisfied. For example, for the

no-slip boundary only velocity need to be modified.

4. We note that one should ensure that the MS of the prop-

erty of interest is non-zero on the boundary before the

boundary condition is satisfied. For example, if we need

u ·n at the boundary to be zero, we must make sure that

u ̸= 0 at the boundary.

In appendix A, we discuss the construction of MS for all the

methods discussed in this paper. In the next section, we use

these MS (defined in appendix A) to test various boundary

condition implementation discussed in section III and sec-

tion IV.

VI. RESULTS

In this section, we verify the convergence of various bound-

ary condition implementations discussed in section III and

section IV using MMS. We first show the convergence of var-

ious solid boundary condition implementations followed by

the inflow and outflow boundary implementations. For all the

test cases, we simulate 100 timesteps for resolutions in the

range 100×100 to 500×500, and evaluate the L1 error in the

domain given by

L1 = ∑
j
∑

i

|( f (xi,yi, t j)− fo(xi,yi, t j))|

N ×Nt

(21)

where f is the property of interest and fo is the property value

determined using the MS, N is the number of particles in the

domain, Nt are number of instances in time43. We fix the

timestep corresponding to the highest resolutions in order to

isolate the error due to boundary condition implementation.

We use the PySPH44 framework to implement all the meth-

ods. All the results presented in this paper are reproducible

and can be easily generated using the automation framework

automan45. In the interest of reproducibility, we provide

the entire source code at https://gitlab.com/pypr/mms_
sph_bc.

A. Comparison of solid boundary condition implementations

In this section, we verify all the solid boundary methods

discussed in section III. The solid boundary can be straight

or curved. In this paper, we do not consider a non-smooth

geometric features, like a corner. For corners, one requires

a discontinuous MS, and at discontinuity the higher order

terms fail to show the actual order of convergence. However,

the method showing second-order convergence for smooth

boundary will perform better than other methods. We con-

sider three types of boundary shapes viz. straight, convex, and

concave as shown in fig. 9. The fluid particles are represented

by the blue color, and the green color particles represent the

ghost particles for which we set the properties using the MS.

The orange colored particles are used to verify a particular

method. The domain referred to as ‘straight’, the ghost parti-

cles in orange have a constant normal. The domain referred

to as ‘convex’, the boundary is a convex surface, whereas the

domain referred to as ‘concave’, the boundary is a concave

surface. We note that both convex and concave domains are

identical, however the boundary surfaces of interest are differ-

ent.

FIG. 9. Types of domains considered to test the convergence of solid

boundary implementation. The fluid particles are represented by the

blue color, the particles in green represent ghost particles on which

properties are set using MS, and the particles in orange are used to

test the convergence of boundary implementation of interest.

We observe that the convex and concave domains have

staircase pattern at the boundary due to the use of the Carte-

sian arrangement of particles to represent the boundary. We

use the method proposed by Negi and Ramachandran 46 , to

pack the particles near both, the inner and outer surface. In

fig. 10, we plot the packed version of the convex and con-

cave domains, and we refer to these as ‘packed-convex’ and

‘packed-concave’ respectively.

1. Neumann pressure boundary condition

In this section, we apply various methods described in sec-

tion III to apply the Neumann pressure boundary condition

on the orange particles shown in the domains in fig. 9, and

fig. 10. We first use the MS in eq. (A1). The MS ensures that

∇p ·n = 0 at the boundary of interest in the straight domain.

We refer to a particular method using the corresponding first

author names. The ‘MMS’ and ‘MMS-2L’ are the cases where

properties on solid are updated using the MS, and six layers

and two layers of ghost particles are used to represent solid,
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 9

FIG. 10. The packed version of convex and concave domains. The

fluid particles are represented by blue color, the particles in green

represents ghost particles on which properties are set using MS, and

the particles in orange are used to test the convergence of desired

boundary condition implementation.

respectively. In fig. 11, we plot the L1 error in the pressure

and velocity after 100 timesteps.

The ‘MMS-2L’ plot shows that the L-IPST-C scheme con-

verges even when two layers of solid particles are employed

for a straight boundary. In the case of the straight domain, all

the methods considered in this paper are second-order conver-

gent except the method proposed by Fourtakas et al. 15 , where

a virtual stencil is used to complete the support of the parti-

cles. However, the rate of convergence is similar to as reported

in 15.

We also test all the methods on the convex and concave

domains. In order to verify, we use the MS in eq. (A2) which

satisfies the boundary condition for the surface of interest in

both the domains. In fig. 12, and fig. 13, we plot the L1 error

for pressure and velocity for the convex and concave domains,

respectively.

We observe that the method proposed by Hashemi, Fatehi,

and Manzari 47 diverges since only a single layer of parti-

cles are used to represent solid, which is insufficient even for

corrected gradient computation. However, the method pro-

posed by Marongiu, Leboeuf, and Parkinson 33 shows first-

order convergence. Moreover, the rate of convergence is non-

monotonous for a convex boundary. The reason behind a

lower order of convergence is the use of a single layer of par-

ticles and zeroth order interpolation on the virtual particles,

which are further used in the fifth order finite difference inter-

polation. The method proposed by Fourtakas et al. 15 shows

first order convergence in pressure and 1.5 in velocity as ex-

pected. The convergence of the method proposed by Adami,

Hu, and Adams 37 , and ‘MMS-2L’ are very close to 1.5. The

‘MMS-2L’ has a slight decrease in convergence compared to

‘MMS’, which shows that the minimum number of layers

required for an accurate Neumann boundary is higher for a

curved surface compared to a straight boundary. Clearly, the

method proposed by Marrone et al. 14 is second order conver-

gent.

In order to remove the effect of jagged edges on the con-

vergence of the boundary condition implementations, we per-

formed the numerical experiment on the packed domain viz.

packed-convex and packed concave as shown in fig. 10. Since

the boundary surfaces are the same, we use the same MS in

eq. (A2). In fig. 14, and fig. 15, we plot the L1 error for pres-

sure and velocity for both the domains.

We observe that all the methods show a better rate of con-

vergence. We note that unlike earlier in the Hashemi method

errors do not increase. Furthermore, Marongiu method shows

an almost constant rate of convergence for a convex domain.

The rate of convergence increases for all the methods com-

pared to an unpacked domain. The convergence of the method

proposed by Colagrossi and Landrini 13 increases by a large

amount since the particles after mirroring have good distribu-

tion. The method by Marrone et al. 14 and Colagrossi and Lan-

drini 13 overlaps and shows second-order convergence. This

test also demonstrates the effectiveness of packing for curved

surfaces.

2. Slip boundary condition

In this section, we test various slip boundary condition im-

plementations discussed in section III. In order to test these

methods, we use all the different domains considered in the

previous results. For the straight domain, we use the MS

in eq. (A3). In order to construct this MS we ensure that

u · n = 0 at the boundary. In fig. 16, we plot the L1 error

in pressure and velocity after 100 timesteps. Clearly, all the

methods show second-order convergence. In general, the slip

boundary condition is not a realistic boundary condition, and

it is usually used to remove the effect of walls not affecting

the flow. However, to complete the discussion, we test these

methods in other domains.

We construct the MS for convex and concave domains in

eq. (A4) that satisfies u ·n = 0 at respective boundary surfaces

of interest. In fig. 17 and fig. 18, we plot the L1 error for pres-

sure and velocity in convex and concave domains after 100

timesteps, respectively. Clearly, the method proposed by Co-

lagrossi and Landrini 13 diverges for higher resolutions. The

method proposed by Adami, Hu, and Adams 37 shows con-

vergence rate close to 1.6 whereas the method by Marrone

et al. 14 is very close to second-order convergence.

We use the same MS for the packed-convex and packed-

concave domains. In fig. 19 and fig. 20, we plot the L1 er-

ror for pressure and velocity for packed-convex and packed-

concave domains after 100 timesteps, respectively. As ex-

pected, The order of convergence is improved. In the packed

domain, the convergence for the method by Adami, Hu, and

Adams 37 , and Marrone et al. 14 shows second order conver-

gence. The method proposed by Colagrossi and Landrini 13

converges for lower resolutions in the case of the packed-

convex domain but diverges in the case of packed-concave

domain. This shows that mirroring the fluid particles for a

curved surface does not result in a convergent boundary con-

dition implementation.

3. No-slip boundary condition

In this section, we test different no-slip boundary imple-

mentations discussed in section III using the domains used in
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 10

FIG. 11. L1 error in pressure and velocity after 100 time steps for different Neumann pressure boundary implementations in the straight domain

in fig. 9.

FIG. 12. L1 error in pressure and velocity after 100 time steps for different Neumann pressure boundary implementations in the convex domain

as shown in fig. 9.

the previous section. In all the no-slip boundary condition im-

plementations, we apply no-penetration along with the no-slip

boundary. In order to construct an MS for no-slip boundary

condition, we satisfy u = 0 at the boundary. For the straight

domain, we use the MS in eq. (A5). In fig. 21, we plot the

L1 error for pressure and velocity in the domain after 100

timesteps. Clearly, all the methods show a convergence rate

very close to second order.

Generally, we find that objects on which we intend to ap-

ply no-slip boundary are curved. Therefore, we simulate all

the methods on the domains having curved surfaces. For the

convex domain, we use the MS in eq. (A6) whereas for con-

cave domain, we use eq. (A7). In fig. 22 and fig. 23, we

plot the L1 error in pressure and velocity for convex and con-

cave domains, respectively. Clearly, the method proposed by

Hashemi, Fatehi, and Manzari 47 diverges for a curved sur-

face. The errors in the solutions are more in the concave do-

main compared to the convex domain. The method by Randles

and Libersky 12 , Esmaili Sikarudi and Nikseresht 38 , Adami,

Hu, and Adams 37 shows first-order convergence. Whereas

methods by Colagrossi and Landrini 13 , and Marrone et al. 14

shows close to 1.5. Some methods like by Takeda, Miyama,

and Sekiya 10 cannot be applied on the jagged boundary as

some particles may lie on the surface, which may result zero

in the denominator of eq. (13).

Similar to other tests, we use the packed version of convex

and concave domains to test the convergence of the methods

on packed domains. We use the MS in eq. (A6), and eq. (A7)
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 11

FIG. 13. L1 error in pressure and velocity after 100 time steps for different Neumann pressure boundary implementations in the concave

domain as shown in fig. 9.

FIG. 14. L1 error in pressure and velocity after 100 time steps for different Neumann pressure boundary implementations in the packed-convex

domain as shown in fig. 10.

for the packed-convex and packed-concave domains, respec-

tively. In the figure fig. 24, and fig. 25, we plot the L1 er-

ror in pressure and velocity for packed-convex and packed-

concave domains, respectively. As expected, the convergence

is improved. The method by Adami, Hu, and Adams 37 does

not show any convergence due to zero order interpolation

used on the ghost particles. Method by Takeda, Miyama,

and Sekiya 10 , Hashemi, Fatehi, and Manzari 47 , Randles and

Libersky 12 , Esmaili Sikarudi and Nikseresht 38 shows close

to first order convergence. Clearly, the method by Marrone

et al. 14 shows convergence close to the method when MS

is used on the ghost particles. Further, the method of Cola-

grossi and Landrini 13 also shows good convergence, however

the error compared to Marrone et al. 14 method is 2 order of

magnitude higher. In the case of the packed-concave domain

in fig. 25, the order of convergence shown by all methods is

lower compared to packed-convex domain results.

In order to summarize the results, since the straight and

convex domain shows better results compared to concave do-

main, we consider the results for a concave domain only. Fur-

thermore, we compile results for a packed domain only since

the packed domains are preferred over the unpacked ones. In

the case of the no-slip and slip boundary, we focus on the con-

vergence of velocity, and in the case of the Neumann pressure,

we focus only on the convergence of pressure. In table I, we

tabulate the error at the highest resolution, i.e. ∆x = 1/500,

and the approximate order of convergence for all the bound-

ary conditions and methods. Clearly, in the case of the Neu-
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 12

FIG. 15. L1 error in pressure and velocity after 100 time steps for different Neumann pressure boundary implementations in the packed-

concave domain as shown in fig. 10.

FIG. 16. L1 error in pressure and velocity after 100 time steps for different slip boundary implementations in straight domain as shown in

fig. 9.

Method Neumann Pressure Slip No-Slip

Adami37 (1.17×10−5)2.00 (1.82×10−5)1.95 (5.26×10−5)0.09

Colagrossi13 (1.18×10−5)2.00 (1.34×10−3)0.19 (7.47×10−5)1.52

Esmaili38 - - (2.54×10−3)0.55

Fourtakas15 (2.07×10−5)1.66 - -

Hashemi16 (4.39×10−3)0.47 - (2.11×10−3)0.72

Marongiu33 (1.14×10−3)0.63 - -

Marrone14 (1.15×10−5)2.00 (1.58×10−5)1.97 (1.00×10−6)1.35

Randles12 - - (2.91×10−3)0.62

Takeda10 - - (8.63×10−4)0.86

TABLE I. Table showing the summary of the error (in brackets) at the resolution 500× 500 and order of convergence of various boundary

condition methods in the packed-concave domain.
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 13

FIG. 17. L1 error in pressure and velocity after 100 time steps for different slip boundary implementations in the convex domain as shown in

fig. 9.

FIG. 18. L1 error in pressure and velocity after 100 time steps for different slip boundary implementations in the concave domain as shown in

fig. 9.

mann pressure boundary condition, Adami, Colagrossi, and

Marrone converges well. In the case of the slip boundary con-

diton only the Adami and Marrone methods work. Whereas

in the case of the no-slip boundary only Colagrossi and Mar-

rone method show reasonable convergence. Clearly, Marrone

method is able to reach lowest error as well as show conver-

gence for all the types of boundary conditions.

B. Comparison of open boundary condition implementations

In this section, we test various inlet and outlet boundary

condition implementations discussed in section IV. In order

to test the boundary condition implementation, we require the

inlet and outlet boundary to continuously add and remove par-

ticles from the domain, respectively. Furthermore, the inlet

and outlet condition requires that the flow is only along the

normal at the boundary. In order to satisfy these conditions,

we use a 1m×1m domain, with an inlet and outlet on the left

and right, respectively. In fig. 26, we show the domain with

ghost particles representing the inflow (in green), outflow (in

red), and wall (in orange). In the following sections, we dis-

cuss inlet boundary condition implementations first, followed

by outlet boundaries.
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How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 14

FIG. 19. L1 error in pressure and velocity after 100 time steps for different slip boundary implementations in the packed-convex domain as

shown in fig. 10.

FIG. 20. L1 error in pressure and velocity after 100 time steps for different slip boundary implementations in the packed-concave domain as

shown in fig. 10.

1. Inlet boundary

In order to test the inlet velocity boundary condition, we

use the MS in eq. (A8). In fig. 27, we plot the L1 error in

pressure and velocity after 100 timesteps for all the velocity

inflow boundary implementations. We test all the methods

discussed in section IV viz. mirror, simple-mirror, and hybrid.

We observe that both mirror and simple-mirror perform well

for a velocity inlet boundary condition. Whereas the hybrid is

bounded by the limiting error in both pressure and velocity.

In order to test the pressure inflow boundary implementa-

tion, we use the MS in eq. (A11). In fig. 28, we plot the L1

error in pressure and velocity after 100 timesteps for all the ve-

locity inflow boundary implementations. Clearly, the bound-

ary implementation for a pressure inflow boundary is second-

order accurate for all the methods. In the case of the hybrid

method, a slight deviation in the convergence can be seen.

Since in WCSPH, due to weakly compressible assumption,

waves travel with a speed of artificial velocity of sound. We

use the MS simulating a wave passing out of the inlet, these

kind of waves are encountered when a jump start is performed

on a wind tunnel kind of simulation. We simulate the problem

for 500 iterations in order to allow the wave to completely pass

through the inlet/outlet. We use the MS in eq. (A9) for the in-

let velocity wave. In fig. 29, we plot the L1 error in pressure

and velocity for all the methods. Clearly, the hybrid method

also shows second-order convergence along with other meth-

ods.
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FIG. 21. L1 error in pressure and velocity after 100 time steps for different no-slip boundary implementations in the straight domain as shown

in fig. 9.

FIG. 22. L1 error in pressure and velocity after 100 time steps for different no-slip boundary implementations in the convex domain as shown

in fig. 9.

In order to simulate a pressure wave going out of the inlet,

we use the MS in eq. (A12). In fig. 30, we plot the L1 error in

pressure and velocity for all the methods. The mirror method

shows a slight increase in error for higher resolutions. The

simple-mirror remains at the same level of error compared to

the hybrid method, which shows second-order convergence.

2. Outlet boundary

The outflow is different compared to the inlet as we usually

do not have any information about the ghost particles in these

regions. In order to test the outflow velocity boundary con-

dition, we use the MS in eq. (A8). In fig. 31, we plot the L1

error in pressure and velocity after 100 timesteps for all the

velocity outflow boundary implementation. The do-nothing

and the hybrid boundary are both bounded by a limiting error

which is proportional to the speed of sound. As before, both

mirror and simple-mirror show second-order convergence for

velocity outlet boundary condition.

In order to test the pressure outflow boundary implementa-

tion, we use the MS in eq. (A11). In fig. 32, we plot the L1

error in pressure and velocity after 100 timesteps for all the

velocity outflow boundary implementation. Clearly, all the

methods show second-order convergence.

To investigate the behavior of the outlet boundary imple-

mentation under the influence of a passing wave, we use the

MS given in eq. (A13) and eq. (A10) for outlet pressure and
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FIG. 23. L1 error in pressure and velocity after 100 time steps for different no-slip boundary implementations in the concave domain as shown

in fig. 9.

FIG. 24. L1 error in pressure and velocity after 100 time steps for different no-slip boundary implementations in the packed-convex domain as

shown in fig. 10. Note that Marrone results overlaps the results of MMS.

outlet velocity boundary implementations, respectively. In

fig. 33, and fig. 34, we plot the L1 error for pressure and veloc-

ity after 500 timesteps for both the MS. In the case of the ve-

locity wave, all the methods show second order convergence.

However, in the case of the pressure wave in fig. 34, the mir-

ror and simple-mirror method diverges. This shows that the

mirror and simple-mirror methods are not truly non-reflecting

and are unable to pass a pressure wave. These results sup-

port the finding of Negi and Ramachandran 7 , where a short

domain with the mirror outlet was found to be unstable.

In order to summarize the results for the open boundary

conditions, we consider only the results for the traveling wave

since, in WCSPH, it is important that the waves that are gen-

erated must be allowed to pass through inlet/outlet without af-

Method Velocity in Pressure in

Hybrid22 (2.87×10−6) 2.00 (5.66×10−7) 2.02

Mirror21 (2.84×10−6) 1.97 (1.71×10−6) 1.38

Simple Mirror (2.93×10−6) 1.98 (5.64×10−7) 1.81

TABLE II. Summary of results for the wave traveling upstream out

of the inlet for all the methods. Error at highest resolution is shown

in brackets.

fecting the flow. In case of a velocity wave, we focus on errors

in velocity, whereas in the case of a pressure wave, we focus

on errors in pressure. In table II and table III, we tabulate

the error for the highest resolution and the approximate order

of convergence for all the methods simulating traveling wave
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FIG. 25. L1 error in pressure and velocity after 100 time steps for different no-slip boundary implementations in the packed-concave domain

as shown in fig. 10. Note that Marrone results overlaps the results of MMS.

FIG. 26. The domain used for the verification of inlet and outlet

boundary implementation. The blue particles represent the fluid, or-

ange particle represent the wall, green particles are inflow particles,

and red particles are the outflow particles.

Method Velocity out Pressure out

Do-nothing20 (2.80×10−6) 2.00 (6.08×10−7) 2.00

Hybrid22 (3.05×10−6) 1.99 (6.05×10−7) 2.00

Mirror21 (2.97×10−6) 1.97 (1.01×10−3) -3.63

Simple Mirror (2.86×10−6) 1.97 (5.34×10−4) -4.21

TABLE III. Summary of results for the wave traveling downstream

out of the outlet for all the methods. Error at highest resolution is

shown in brackets.

MS. Clearly, the mirror method show significant decrease in

order of convergence in the case of the pressure wave mov-

ing upstream. In case of the wave traveling downstream, both

mirror and simple-mirror diverge. The hybrid method is ap-

plicable and converge for both the scenarios.

C. Performance Comparison

In this section, we compare the performance of three solid

boundary condition implementations, viz. Marrone, Cola-

grossi, and Adami. For this testcase, we use a 10 core, dual

socket Intel(R) Xeon(R) CPU E5-2650 v3 processor CPU. In

the context of complexity, the Adami method requires only

one loop over all the fluid particles to extrapolate properties

from fluid, whereas the Colagrossi method requires the cre-

ation and deletion of particles in every timestep. In the case

of the Marrone method, one needs to solve an additional 4×4

matrix for each particle in the solid boundary, excluding the

extrapolation step.

In fig. 35, we plot the time taken versus the no of paral-

lel computing threads for 100 timesteps for a 100× 100 do-

main. Clearly, the time taken are very close despite the fact

that different amount of computations are required. This is

due to a very low number of solid particle compared to the

fluid particles. In the present case, the fluid particles are

10000, whereas the solid particles on which boundary con-

dition is implemented are 600. Therefore, we demonstrated

that a higher order boundary implementation does not affect

the performance of the solver. Furthermore, these results can

be easily extrapolated to open-boundary implementations. In

the next section, we propose an algorithm to obtain a conver-

gent solver for a problem containing inlet, outlet, and solid

boundaries.
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FIG. 27. L1 error in pressure and velocity after 100 time steps for different inlet velocity boundary implementations in the domain as shown in

fig. 26.

FIG. 28. L1 error in pressure and velocity after 100 time steps for different inlet pressure boundary implementations in the domain as shown

in fig. 26.

VII. COMPLETE SECOND ORDER CONVERGENT SPH
SCHEME

In the previous section, we have shown that some of the

boundary condition implementations are convergent using the

MMS. Recently, Negi and Ramachandran 26 , and Negi and

Ramachandran 7 have used verification methods to procedu-

rally obtain a second order accurate WCSPH scheme with-

out boundary as discussed in section II. In this section, we

extend their method to propose a second-order convergent

scheme with second-order convergent boundary implemen-

tations. For brevity, we use short names to represent an

equation in the algorithm. For example, EvaluateVelocity-

OnGhost(dest, sources) can be written formally as shown in

algorithm 1.

Algorithm 1: Psuedo-code of equation

EvaluateVelocityOnGhost.

for i in dest do

ui = 0;

for j in sources do

ui = ui +u jω jWi j;

In algorithm 1, i is the loop index and j is over all the neigh-

bors of ith element. We note that all the extrapolation/equation

require a corrected kernel/gradient and is implied.

Considering a fluid domain, the inlet continuously feeding
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FIG. 29. L1 error in pressure and velocity after 500 time steps for different inlet velocity wave going upstream boundary implementations as

shown in the domain in fig. 26.

FIG. 30. L1 error in pressure and velocity after 500 time steps for different inlet pressure wave going upstream boundary implementations as

shown in the domain in fig. 26.

particles to the fluid, and the outlet continuously consuming

particles from the fluid and an arbitrary shaped solid body.

In algorithm 2, we show the algorithm for a convergent time-

accurate WCSPH scheme to simulate the flow for a given ini-

tial condition. We denote all the fluid particles by F, all solid

particles by S, and all inlet/outlet particles by IO. All the vir-

tual particles required for solid particles are denoted by M(S).

The algorithm starts with the evaluation of pressure from

the equation of state given by eq. (2) in EvaluatePressure.

In the next step, we evaluate pressure and velocity on in-

let and outlet domain using the hybrid method22 in Eval-

uatePressureOnInletOutlet, and EvaluateVelocityOnInletOut-

let, respectively. We note that the inlet and outlet proper-

ties are updated, and then these are used as the source for

solid properties in case of overlaps. We use the method

by Marrone et al. 14 to evaluate properties on solid parti-

cles. We first evaluate first order accurate values on vir-

tual particles in EvaluateVelocityOnGhost, and EvaluatePres-

sureOnGhost and then use these values to obtain pres-

sure, slip, and no-slip velocities in EvaluatePressureOnSolid-

FromGhost, EvaluateSlipVelocityOnSolidFromGhost, Evalu-

ateNoSlipVelocityOnSolidFromGhost, respectively. In or-

der to obtain second-order accurate viscous operator, we

require velocity gradient on each particle, which is com-

puted in ComputeVelocityGradient, and ComputeVelocityGra-

dientSolid. We note that we consider no-slip extrapolated ve-

locity for gradient computation. Finally, we evaluate accel-

erations due to various forces in ContinuityEquation, Conti-
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FIG. 31. L1 error in pressure and velocity after 100 time steps for different outlet velocity boundary implementations in the domain as shown

in fig. 26.

FIG. 32. L1 error in pressure and velocity after 100 time steps for different outlet pressure boundary implementations in the domain as shown

in fig. 26.

nuityEquationSolid, PressureForces, ComputeViscousForces.

We note that, in the evaluation of the continuity equation,

we use extrapolated slip velocity on solids48. We use the

computed and extrapolated properties to integrate the particle

properties and position. We use IPST to make the particles

more uniform and update the properties using a first-order ac-

curate correction. The IPST can be performed after every few

timesteps. In our simulations, we perform shifting after every

10 iterations.

In order to show the accuracy achieved by the proposed al-

gorithm, we solve the flow past a circular cylinder. We con-

sider the domain shown in fig. 36. We consider inflow velocity

U = 1m/s, Reynolds number Re = 200, and a cylinder of di-

ameter D = 2m. We set the dynamic viscosity ν = UD/Re.

We discretize the domain with ∆x = D/40. The total parti-

cles in the domain are approximately 0.18M. We simulate the

problem using the algorithm 2 with artificial speed of sound

co = 10m/s for 200sec. We set the initial pressure po = ρc2
o,

density ρo = 1.0, and velocity uo =Uî. We add an additional

density damping proposed by Antuono et al. 49 to the continu-

ity equation with δ = 0.0625, to reduce high-frequency pres-

sure oscillations (see the variations of SOC schemes proposed

in sec. II.F of 7).

In fig. 37 and fig. 38, we plot the average pressure and ve-

locity magnitude at t = 100sec, respectively. We compute the

average pressure (pavg)i = ∑ p j/N, where the sum is taken

over all the N neighbors of the ith particle. Cleary, the solution

is free from any high frequency pressure oscillations. Futher-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
2
6
2
3
4



How to train your solver: Verification of boundary conditions for smoothed particle hydrodynamics 21

FIG. 33. L1 error in pressure and velocity after 500 time steps for different outlet velocity wave going downstream boundary implementations

in the domain as shown in fig. 26.

FIG. 34. L1 error in pressure and velocity after 500 time steps for different outlet pressure boundary wave going downstream implementations

in the domain as shown in fig. 26.

more, the pressure in the domain remains in the vicinity of

the reference pressure ρc2
o = 100Pa for the entire simulation.

We also compute the coefficient of lift cl and drag cd for the

cylinder using the method proposed in Negi, Ramachandran,

and Haftu 22 .

In fig. 39, we plot the variation of cd and cl with time for

the present method with results of Negi, Ramachandran, and

Haftu 22 referred to as "EDAC" and Muta, Ramachandran, and

Negi 48 referred to as "SISPH". We obtain the mean cd value

of 1.65 and cl value of 0.74, after the shedding is established.

These values are closer to SISPH values, where a pressure

Poisson equation is solved to obtain pressure. Futhermore,

both the drag and lift coefficient values are free from distur-

bances.

VIII. CONCLUSIONS

The convergence of the boundary condition implementa-

tions is a grand challenge8 in SPH. In order to obtain a con-

vergent boundary implementation, we require a scheme that

must be convergent and should have the order of error lower

than that in the boundary implementation. In this paper, we

use the second order convergent scheme proposed by Negi

and Ramachandran 7 to verify various boundary condition im-

plementations. We use the MMS and construct MS for spe-

cific boundary conditions and domains. For a solid bound-

ary, we verify methods for Neumann pressure, slip, and no-

slip boundary conditions. In order to cover all the aspects of

arbitrary geometries, we test the convergence on a straight,
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FIG. 35. The time taken with the increase in the number of threads

for different solid boundary conditions.

Algorithm 2: A Second order convergent scheme.

while t < t f inal do

for i in F do

EvaluatePressure(dest=i, sources=φ );

for i in IO do

EvaluateVelocityOnInletOutlet(dest=i, sources=F);

EvaluatePressureOnInletOutlet(dest=i, sources=F);

for i in M(S) do

EvaluateVelocityOnGhost(dest=i, sources=F∪ IO);

EvaluatePressureOnGhost(dest=i, sources=F∪ IO);

for i in S do
EvaluateSlipVelocityOnSolidFromGhost(dest=i,

sources=φ );

EvaluateNoSlipVelocityOnSolidFromGhost(dest=i,

sources=φ );

EvaluatePressureOnSolidFromGhost(dest=i,

sources=φ );

for i in F∪S do

ComputeVelocityGradient(dest=i, sources=F∪ IO);

# use extrapolated no slip velocity for

solid

ComputeVelocityGradientSolid(dest=i, sources=S);

for i in F do

ContinuityEquation(dest=i, sources=F∪ IO);

# use extrapolated slip velocity for

solid

ContinuityEquationSolid(dest=i, sources=S);

PressureForces(dest=i, sources=F∪S∪ IO);

ComputeViscousForces(dest=i, sources=F∪ IO);

for i in F∪ IO do
Integrate(dest=i, sources=φ )

convex, and concave boundary. In the case of open bound-

aries, we consider a square domain with inlet and outlet re-

gions simulating a wind-tunnel. We manufactured solutions

for inlets and outlets for both Neumann pressure and velocity.

Additionally, we manufactured solutions depicting waves of

pressure and velocity passing through inlet/outlets.

We show that the method proposed by Marrone et al. 14 is

FIG. 36. Description of the domain of the flow fast cylinder problem.

FIG. 37. Average pressure at t = 100sec.

FIG. 38. Velocity magnitude at t = 100sec.
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FIG. 39. cd and cl variation for the flow past a cylinder with time.

convergent for all kinds of the domain and boundary condi-

tions on a solid boundary. Some other method like Colagrossi

and Landrini 13 , Adami, Hu, and Adams 37 are second-order

convergent in inviscid flow and packed domains. Almost

all boundary implementations are second-order on a straight

boundary. In the case of open boundaries, the mirror and

simple-mirror work well in the absence of a wave traveling

through the boundary. The hybrid and do-nothing boundaries

are bounded by the O(M2), where M is the Mach number of

the flow. However, in the case of a wave traveling through the

domain, the mirror and simple-mirror method diverges, and

hybrid and do-nothing methods converge with second-order

accuracy. Finally, we discuss an algorithm to apply these

boundary conditions in order to get a convergent solver. We

use the method proposed by Marrone et al. 14 for solids and

Negi, Ramachandran, and Haftu 22 for inlet and outlet bound-

aries. We demonstrate the accuracy of the proposed algorithm

by solving the flow past a circular cylinder. We achieved the

accuracy close to the results obtained using incompressible

SPH solvers.

The manufactured solutions created in this paper can be

used for any meshless solver for the specified domains. In this

paper, we carried out appropriately 834 simulations, which

take around 70 hours, which demonstrates the efficiency of the

MMS. In the future, we would like to use the MMS to obtain

a second-order convergent adaptive solver. Since the second-

order convergence comes at the cost of performing kernel cor-

rection, the adaptivity in space and time will compensate for

this and will result in a convergent and fast WCSPH solver.

We believe that with the identification of convergent bound-

ary conditions along with second order convergent SPH

schemes, it should be possible to build accurate and general

purpose SPH-based solvers for the simulation of a wide va-

riety of incompressible and weakly compressible fluid flow

simulations. The recent advancements in adaptive resolution

in SPH, will also facilitate the efficient simulation of such

problems. In the future, we would like to use MMS to ob-

tain a second-order convergent free surface boundary condi-

tion which are used widely in fluid and structure applications.

Appendix A: Manufactured solutions

1. Neumann pressure boundary

In this boundary condition, we ensure that ∇p ·n= 0, where

n is normal to the boundary surface. For the straight domain

the normal n = j, therefore, we can construct the MS given by,

u(x,y) = (y−1)sin(2πx)cos(2πy)

v(x,y) =−(y−1)sin(2πy)cos(2πx)

p(x,y) = x2 + cos(4πx).

(A1)

In fig. 40, we show the contour plot of the above MS in

straight domain.

FIG. 40. Velocity and pressure contours on the straight domain in

fig. 9 of the MS in eq. (A1).

In the case of the convex domain, the normal to the sur-

face is given by n = (x− 0.5)i+(y− 0.5)j, therefore we can

construct a MS is given by

u(x,y) = (y−1)sin(2πx)cos(2πy)

v(x,y) =−(y−1)sin(2πy)cos(2πx)

p(x,y) = tan−1

(

(y−0.5)2

(x−0.5)2

)

(A2)

In fig. 41, we show the contour plot of the above MS in the

convex domain.

FIG. 41. Velocity and pressure contours on the convex/concave do-

main of the MS in eq. (A2).

Since, for the concave domain, the normal remains the

same, we can use the same MS since it satisfies ∇p · n = 0

at the surface of interest. We note that for the packed version
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of the domain in fig. 10, we can use the same MS as used in

the unpacked version as the surface of interest is exactly the

same.

2. Slip boundary condition

For the slip boundary condition, we ensure that u ·n = 0 at

the boundary surface. For the straight domain, we construct

the MS given by

u(x,y) = (y−1)sin(2πx)cos(2πy)+1

v(x,y) =
(

(y−1)2
)

sin(2πy)

p(x,y) = cos(4πx)+ cos(4πy)

(A3)

In fig. 42, we plot the velocity and pressure contour gener-

ated by the MS in eq. (A3).

FIG. 42. Velocity and pressure contours on the straight domain of

the MS in eq. (A3).

For the convex domain the normal n = (x − 0.5)i + (y −
0.5)j, therefore we construct the MS given by

u(x,y) = (y−0.5)sin(2πx)cos(2πy)

v(x,y) =−(x−0.5)sin(2πx)cos(2πy)

p(x,y) = cos(4πx)+ cos(4πy)

(A4)

such that u ·n = 0. In fig. 43, we plot the velocity and pres-

sure contour generated from the MS in eq. (A3). We note

that since for the concave as well as packed domains, the nor-

mal remains the same therefore we can use the same MS in

eq. (A4) for all these domains.

3. No-slip boundary condition

For a no-slip boundary condition, we ensure that the veloc-

ity at the surface is zero for a stationary wall. For the straight

domain, we construct the MS given by

u(x,y, t) = (1− y)2
e−10t sin(2πx)cos(2πy)

v(x,y, t) =−(1− y)2
e−10t sin(2πy)cos(2πx)

p(x,y, t) = (cos(4πx)+ cos(4πy))e−10t

(A5)

FIG. 43. Velocity and pressure contours on the convex/concave do-

main of the MS in eq. (A4).

FIG. 44. Velocity and pressure contours on the straight domain of

the MS in eq. (A5).

In fig. 44, we plot the contour plot for the velocity and pres-

sure generated by the MS in eq. (A5).

In order to construct an MS for the convex domain in fig. 9,

we construct the MS such that the velocity is zero on the inner

surface of the domain, given by

u(x,y, t) =
(

−(x−0.5)2 − (y−0.5)2 +0.0625
)

e−10t sin
(

π
(

2(x−0.5)2 +2(y−0.5)2
))

v(x,y, t) =−
(

−(x−0.5)2 − (y−0.5)2 +0.0625
)

e−10t cos
(

π
(

2(x−0.5)2 +2(y−0.5)2
))

p(x,y, t) = (cos(4πx)+ cos(4πy))e−10t

(A6)

In fig. 45, we plot the velocity and pressure contour gener-

ated from the MS in eq. (A6).

In order to construct the MS for the concave domain in

fig. 9, we make the velocity zero on the outer surfaces given

by

u(x,y, t) =
(

−(x−0.5)2 − (y−0.5)2 +0.25
)

e−10t sin
(

π
(

2(x−0.5)2 +2(y−0.5)2
))

v(x,y, t) =−
(

−(x−0.5)2 − (y−0.5)2 +0.25
)

e−10t cos
(

π
(

2(x−0.5)2 +2(y−0.5)2
))

p(x,y, t) = (cos(4πx)+ cos(4πy))e−10t

(A7)
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FIG. 45. Velocity and pressure contours on the convex domain of the

MS in eq. (A6).

In fig. 46, we plot the contour for velocity and pressure gen-

erated from the eq. (A7) for the concave domain. We note

that the MS described remains the same for the corresponding

packed version of the domains.

FIG. 46. Velocity and pressure contours on the concave domain of

the MS in eq. (A7).

4. Inlet and outlet velocity boundary

At the inlet, we make sure that ∇u ·n = 0.‘’ Since the inlet

is usually straight. We consider one type of inlet with constant

normal n =−i similarly outlet with normal n = i. We use the

MS given by

u(x,y, t) = y(y−1)e−10t cos(2πy)+1

v(x,y, t) =−x2 (x−1)2
e−10t sin(2πy)

p(x,y, t) = (cos(4πx)+ cos(4πy))e−10t

(A8)

In the fig. 47, we plot the velocity and pressure contour for

the MS in eq. (A8).

Additionally, we also simulate the wave passing through the

inlet and outlet. We also must satisfy the boundary condition.

For the inlet, we construct the MS given by

u(x,y, t) = x2y(y−1)e−200(x−0.1−40t)2

cos(2πy)+1

v(x,y, t) = 0.0

p(x,y, t) = cos(4πx)+ cos(4πy)

(A9)

In fig. 48, we plot the velocity and pressure contour for the

MS in eq. (A9).

FIG. 47. Velocity and pressure contours on the domain in fig. 7 of

the MS in eq. (A8).

FIG. 48. Velocity and pressure contours on the domain in fig. 7 of

the MS in eq. (A8).

We construct the wave of velocity passing through the out-

let given by

u(x,y, t) = (x−1)2y(y−1)e−200(x−0.9+40t)2

cos(2πy)+1

v(x,y, t) = 0.0

p(x,y, t) = cos(4πx)+ cos(4πy)

(A10)

In fig. 49, we plot the velocity and pressure generated by

the MS in eq. (A10).

FIG. 49. Velocity and pressure contours on the domain in fig. 7 of

the MS in eq. (A8).
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5. Inlet and outlet pressure boundary

At the inlet, for pressure ,we make sure that ∇p ·n = 0. For

inlet as well as the outlet, we use the MS given by

u(x,y, t) = y(y−1)e−10t cos(2πy)+1

v(x,y, t) =−x(x−1)e−10t sin(2πy)

p(x,y, t) = y(y−1)e−10t cos(2πy)

(A11)

In fig. 50, we plot the velocity and pressure contour gener-

ated from the MS in eq. (A11).

FIG. 50. Velocity and pressure contours on the domain in fig. 7 of

the MS in eq. (A11).

In order to simulate a pressure wave passing through both

inlet and outlet, we construct MSs with pressure moving with

the artificial speed of sound. For the inlet, we construct the

MS given by

u(x,y, t) = y(y−1)cos(2πy)+1

v(x,y, t) = 0.0

p(x,y, t) = x2e−200(x−0.1−40t)2

cos(2πy)

(A12)

In fig. 51, we plot the velocity and pressure generated from

the MS in eq. (A12).

FIG. 51. Velocity and pressure contours on the domain in fig. 7 of

the MS in eq. (A11).

In the case of the outlet, we construct the MS given by

u(x,y, t) = y(y−1)cos(2πy)+1

v(x,y, t) = 0.0

p(x,y, t) = (x−1)2e−200(x−0.9+40t)2

cos(2πy)

(A13)

In fig. 52, we plot the velocity and pressure due to MS in

eq. (A13).

FIG. 52. Velocity and pressure contours on the domain in fig. 7 of

the MS in eq. (A11).
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