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Despite the many advances in the use of weakly-compressible smoothed particle hydrodynamics (SPH) for the simu-

lation of incompressible fluid flow, it is still challenging to obtain second-order convergence even for simple periodic

domains. In this paper we perform a systematic numerical study of convergence and accuracy of kernel-based ap-

proximation, discretization operators, and weakly-compressible SPH (WCSPH) schemes. We explore the origins of

the errors and issues preventing second-order convergence despite having a periodic domain. Based on the study, we

propose several new variations of the basic WCSPH scheme that are all second-order accurate. Additionally, we inves-

tigate the linear and angular momentum conservation property of the WCSPH schemes. Our results show that one may

construct accurate WCSPH schemes that demonstrate second-order convergence through a judicious choice of kernel,

smoothing length, and discretization operators in the discretization of the governing equations.

I. INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) has been used

to simulate weakly-compressible fluids since the pioneering

work of Monaghan 1 . Many variations of the basic method

have been proposed to create an entire class of weakly-

compressible SPH schemes (WCSPH). One particularly diffi-

cult challenge has been the poor convergence displayed by the

WCSPH methods making it one of the SPH grand-challenge

problems2.

The SPH method works by using a smoothing kernel to

approximate a function wherein the choice of the kernel in-

fluences the accuracy of the method. The length scale of

the smoothing kernel is often termed the support radius or

smoothing length, h. A variety of kernels are used in the

literature and the smoothing length may either be fixed in

space/time or varying. One can show that for a symmetric ker-

nel, the SPH kernel approximation is spatially second-order

accurate in h. However, the particle discretization of this ap-

proximation seldom achieves this and even first-order conver-

gence often requires care and tuning of the smoothing length.

Hernquist and Katz 3 proposed that the support radius, h be

increased such that h ∝ ∆s−1/3 in three dimensions where ∆s

is the local inter-particle separation. Subsequently, Quinlan,

Basa, and Lastiwka 4 derived error estimates for the standard

SPH discretization and found that the ratio h/∆s must increase

as the h value is reduced to attain convergence; this is because

of error terms of the form
(

∆s
h

)β+2
, where β is a measure of

the smoothness of the kernel at the edge of its support. This is

an issue because as h increases, the number of neighbors for

each particle increases resulting in a prohibitive increase of

computational effort. Furthermore, increasing the smoothing

radius also reduces the accuracy of the method. This is the

a)Corresponding author

approach used in the work of Zhu, Hernquist, and Li 5 who

proposed that the number of neighbors Nnb ∝ N0.5, where N

is the number of particles, in order to get convergence using

SPH kernels.

Kiara, Hendrickson, and Yue 6,7 shows that when the parti-

cles are distributed uniformly it is possible to obtain second-

order convergence. The results of 4 show that when using suf-

ficiently smooth kernels (where β is large or infinite), one can

obtain second-order convergence. Indeed, Lind and Stansby 8

demonstrate that for particle distributions on a Cartesian mesh

one can obtain higher order convergence using higher order

kernels.

However, for kernels that are normally used in SPH, the

SPH approximations of derivatives become inaccurate even

on a uniform grid unless a very large smoothing radius is

used. Many methods have been proposed to correct the gradi-

ent approximation9–12. These typically ensure that the deriva-

tive approximation of a linear function is exact. This linear

consistency is achieved by inverting a small matrix for each

particle and using this to correct the computed gradients. This

makes the derivative approximation second-order accurate but

increases the computational cost of the gradient computation

two-fold.

In the context of incompressible fluid flows, the governing

equations involve the divergence, gradient, and Laplacian op-

erators. These operators must be discretized and used in the

context of Lagrangian particles. The divergence operator is

encountered in the continuity equation and the discretization

proposed by 1 is widely used. Rather than using a continuity

equation, some authors13 prefer to use the summation density

formulation proposed in 14 to directly evaluate density. The

gradient operator is encountered in the momentum equation.

Many authors prefer using a discretized form that manifestly

preserves linear momentum and as a result employ the sym-

metric form of the gradient operator1,9. The symmetrization

can be done in two different ways and Violeau 15 shows that

the selection of one form dictates the form to be used for di-
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 2

vergence discretization in order to conserve volume (energy)

in phase space.

Given the inaccuracy of the SPH approximation in com-

puting derivatives accurately, the kernel corrections of 9 and

10 maybe applied to obtain linear consistency of the gradi-

ent and divergence operators. Unfortunately, the use of the

corrections implies that linear momentum is no longer man-

ifestly conserved. Frontiere, Raskin, and Owen 16 propose

a symmetrization of the corrected kernel as originally sug-

gested by Dilts 17,18 to conserve linear momentum but the

symmetrization implies that the operator is not first order con-

sistent. Thus, the unfortunate consequence of demanding lin-

ear consistency is lack of conservation and vice-versa. A con-

servative and linear consistent gradient operator is currently

not available.

The Laplacian is a challenging operator in the context of

SPH. The simplest method is the one where the double deriva-

tive of the kernel is employed. However, the double deriva-

tives of the kernel are very sensitive to any particle disorder.

Chen and Beraun 19 propose an approach by considering the

inner product with each of the double derivatives and taking

into account the leading order error terms. Zhang and Batra 20

propose using the inner product with all the derivatives of the

kernel lower and equal to the required derivative. This gen-

erates a system of 10 equations in two-dimensions. Korzil-

ius, Schilders, and Anthonissen 21 propose an improvement

over the method of 19 to evaluate the correction term. All of

these methods require the computation of higher order kernel

derivatives. Many authors22,23 proposed methods to correct

the Laplacian near the boundary. In all of these formulations

linear momentum is not manifestly conserved.

The Laplacian may also be discretized using the first deriva-

tive of the kernel using an integral approximation of the Lapla-

cian. This was first suggested by Brookshaw 24 and has

been improved by Morris, Fox, and Zhu 25 , Cleary and Mon-

aghan 26 . They employ a finite difference approximation to

evaluate the first order derivative and then convolve this with

the kernel derivative. This formulation was structured such

that it conserves linear momentum. However, these approxi-

mations do not converge as the resolution increases especially

in the context of irregular particle distributions. Fatehi and

Manzari 27 propose an improved formulation by accounting

for the leading error term; this makes the method accurate and

convergent but makes the approximations non-conservative.

Another method to discretize the Laplacian is the repeated

use of a first derivative and this has been used by Bonet and

Lok 9 , and Nugent and Posch 28 . The formulation is generally

not popular since it shows high frequency numerical oscilla-

tions when the initial condition is discontinuous. Recently,

Biriukov and Price 29 show that these oscillations can be re-

moved by employing smoothing near the discontinuity.

Various SPH schemes have been proposed that use the

above methods for discretization of the different operators.

The simplest of the schemes is the original weakly compress-

ible SPH (WCSPH) method1,30. This method is devised such

that it conserves linear momentum as well as the Hamilto-

nian of the system. However, as the particles move they be-

come highly disorganized and this significantly reduces the

accuracy of the method. Many particle regularization meth-

ods popularly known as particle shifting techniques (PST)

have been proposed which can be incorporated into WCSPH

schemes12,31–33. These methods ensure that the particles are

distributed more uniformly. Instead of displacing the particles

directly, Adami, Hu, and Adams 13 propose to use a transport

velocity instead of the particle velocity to ensure a uniform

particle distribution. This approach is also framed in the con-

text of Arbitrary Lagrangian Eulerian (ALE) SPH schemes by

Oger et al. 34 . A similar approach is used by Sun et al. 33 to

incorporate the shifting velocity in the momentum equation

with the δ -SPH scheme35,36. Ramachandran and Puri 37 also

employ a Transport Velocity Formulation (TVF) and addition-

ally propose using the Entropically Damped Artificial Com-

pressibility (EDAC) scheme38 in the context of SPH, which

removes the need for an equation of state (EOS). The result-

ing method is accurate but does not converge with an increase

of resolution. An alternative approach to ensure particle ho-

mogeneity is the approach of remeshing proposed by Chanio-

tis, Poulikakos, and Koumoutsakos 39 where the particles are

periodically interpolated into a regular Cartesian mesh. The

method can be accurate but the remeshing can be diffusive

and makes the method reliant on a Cartesian mesh. In a sub-

sequent development, Hieber and Koumoutsakos 40 employ

remeshing but couple it with an immersed boundary method

to deal with complex solid bodies. Recently, Nasar et al. 41

modify the method introduced by Lind et al. 32 to devise an

Eulerian WCSPH scheme that also uses ideas from immersed

boundary methods to handle complex geometry.

To summarize the discussion in the context of conver-

gence, some authors4,22,23 demonstrate numerical conver-

gence for the derivative and function approximation. Many

authors7,12,13,19,20,35,42 only show convergence in the form of

plots that approach an exact solution with increasing resolu-

tion without formally computing the order of convergence.

Some authors demonstrate second order convergence for sim-

pler problems with a fixed particle configuration like the heat

conduction equation21,22,26,27, the Poisson equation23, and the

evolution of an acoustic wave16. Second order convergence

has also been demonstrated for Eulerian SPH methods where

the particles are held fixed8,41 or where the particles are re-

meshed40. Some authors11,16,31,37,43,44 show first order con-

vergence for Lagrangian SPH schemes but this does not per-

sist as the resolution is increased. Therefore, to the best of

our knowledge, none of the contemporary Lagrangian SPH

schemes appear to demonstrate a formal second order conver-

gence for simple fluid mechanics problems like the Taylor-

Green vortex problem for which an exact solution is known.

In this paper, we carefully construct a family of Lagrangian

SPH schemes that demonstrate second order numerical con-

vergence for the classic Taylor-Green vortex problem. We

first study several commonly used SPH kernels in the con-

text of function and derivative approximation using particles

that are either in a Cartesian arrangement or in an irregular but

packed configuration of particles encountered when employ-

ing some form of a particle shifting technique. We choose

a suitable correction scheme that produces second order ap-

proximations. We then select a suitable kernel and smooth-
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ing radius based on this study. We then systematically study

the various discretization operators along with suitable cor-

rections. Our investigations are in two-dimensions although

the results are applicable in three dimensions as well. Our nu-

merical investigation covers a wide range of resolutions with

our highest resolution using a quarter million particles with
L
∆s

= 500, where L = 1m is the length of the domain. Once we

have identified suitable second order convergent operators we

carefully construct SPH schemes that display a second order

convergence (SOC). We use the Taylor-Green vortex problem

to demonstrate this. We also compare our results with those of

several established SPH methods that are currently used. We

study the accuracy, convergence, and also investigate the com-

putational effort required. We construct both Lagrangian and

Eulerian schemes that are fully second order convergent. We

provide schemes that use either an artificial compressibility

in the form of an equation state or using a pressure evolution

equation.

Once we have demonstrated second order convergence for

the Taylor-Green vortex problem we proceed to investigate

the Gresho-Chan vortex45 problem as well as an incompress-

ible shear layer problem46 and look at how the lack of man-

ifest conservation impacts the conservation of linear and an-

gular momentum. In the interest of reproducibility, all the re-

sults shown in the paper are automatically generated through

the use of an automation framework47, and the source code

for the paper is available at https://gitlab.com/pypr/
convergence_sph. In the next section we discuss the SPH

method briefly and then proceed to look at the SPH kernel

interpolation.

II. SECOND ORDER CONVERGENT WCSPH SCHEMES

We define the SPH approximation of any scalar (vector)

field f (f) in a domain Ω by

⟨ f (x)⟩=
∫

Ω
f (x̃)W (x− x̃,h)dx̃, (1)

where x, x̃ ∈ Ω, W is the kernel function, and h is the support

radius of the kernel. It is well known15,48 that for a symmetric

kernel which satisfies
∫

W (x)dx = 1 that,

f (x) = ⟨ f (x)⟩+O(h2). (2)

Some of the widely used kernels are Gaussian48, cubic

spline1, quintic spline, and Wendland quintic49. We note that

in this work we take h to be a constant.

When the kernel support is completely inside the domain

boundary then we can evaluate the gradient of a function by

taking the gradient of the kernel inside the integral. This ap-

proximation is also second-order in h15. In order to compute

gradient numerically, we discretize the domain Ω using par-

ticles having mass m, and density ρ . The discretization of

the domain into particles introduces additional error in the

approximation and is discussed in Quinlan, Basa, and Lasti-

wka 4 . We can approximate the gradient of f as,

∇ f (xi) =∑
j

f (x j)∇Wi jω j + |∇3 f (xi)|O(h2)+

|∇ f (xi)|O

(

(

∆s

h

)β+4
)

,

(3)

where Wi j = W (xi − x j,h), ω j =
m j

ρ j
is a measure of the vol-

ume of the particle, β is the smoothness of the kernel at the

edge of its support, and the sum is taken over all the particles

under the support of the kernel. The value of β is defined as

the smallest order of derivative of the kernel at the edge of its

support that is non-zero. For example, β = 3 for cubic spline

kernel, and β = 5 for quintic spline kernel. We note that the

kernel gradient is second order accurate only for a uniform

distribution of particles9,10,27. However, many authors9,10,17

have proposed methods to obtain second order convergent ap-

proximation of the gradient of a function irrespective of the

particle distribution. Fatehi and Manzari 27 obtained the error

in approximation given by

∇ f (xi) =∑
j

f (x j)∇̃Wi jω j + |∇3 f (xi)|O(h2)+

|∇2 f (xi)|O

(

d̃i

(

∆s

h

)β+4
)

,

(4)

where ∇̃Wi j = Bi∇Wi j, where Bi is the correction matrix, and

d̃i is the deviation of particle i from its unperturbed location.

We note that the error due to the quadrature rule is retained.

The numerical volume ω in eq. (4) is an approximation and

solely depends upon the spatial distribution of the particles.

The density ρ may be computed for a particle using the sum-

mation density as,

ρi = ∑
j

m jWi j. (5)

Therefore, for constant mass we may write the volume as,

ωi =
1

∑ j Wi j

. (6)

Since the function and its derivative approximation depend

on the kernel W , support radius h, and the scaling factor h∆s =
h/∆s, we perform a numerical study of the effect of the kernel

on convergence next.

A. Selection of approximating kernel

In this section, we compare various SPH kernels for their

accuracy and order of convergence in a discrete domain. We

evaluate the error in function and derivative approximation in

a two-dimensional periodic domain. We simulate periodic-

ity by copying the appropriate particles and their properties

near the boundary such that the boundary particles have full

support50. The particles are either placed in a uniform mesh
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FIG. 1. The unperturbed periodic particle and perturbed periodic

particles.

(unperturbed) or in a packed arrangement referred as Unper-

turbed Periodic (UP) or Perturbed Periodic (PP), respectively.

In order to obtain the packed configuration, the particles are

slightly perturbed from a uniform mesh and their positions are

moved and allowed to settle into a distribution with a nearly

constant density using a particle packing algorithm51. The al-

gorithm effectively ensures that the particles are not clustered

and have minimal density variations. This mimics the effect

of many recent particle shifting algorithms12,32,52. In fig. 1,

we show both the domains.

We compare the L1 error in function and derivative approx-

imation using various approximating kernels commonly used

in SPH with different support radii. We present a detailed

analysis in appendix A. The following is a summary of the

analysis:

• Errors for function approximation on an UP domain are

not affected by the choice of kernel.

• The error increases with the increase in the h∆s.

• The error in a PP domain is dominated by the discretiza-

tion error at higher resolutions.

FIG. 2. The convergence of the derivative approximation with differ-

ent kernels when the gradient correction of Bonet and Lok 9 is used

on a PP domain. Here we use h∆s = 1.2.

In order to study the effect of kernel gradient correction, we

apply the correction proposed by Bonet and Lok 9 for all the

selected kernels. The derivative approximation with correc-

tion is given by

⟨∇ f (xi)⟩= ∑
j

( f (x j)− f (xi))Bi∇Wi jω j. (7)

In fig. 2, we plot the L1 error in the derivative approximation

as a function of resolution. Clearly, all the kernels Gaussiani

(G), Wendland quintic 6th order (WQ6), cubic spline (CS),

and quintic spline (QS) show more or less the same behavior.

Thus, we can choose any of these kernels for our convergence

study of the WCSPH schemes. In the figure, it can be seen

that the WQ6 and G kernels do not sustain the second-order

behavior. Therefore in this work, we choose the QS kernel

with h∆s = 1.2 for all the test cases henceforth.

B. Considerations while applying kernel gradient correction

The SPH method is widely used to solve fluid flow prob-

lems. In this work, we focus on weakly-compressible SPH

schemes that are used to simulate incompressible fluid flows.

We write the Navier-Stokes equation for a weakly compress-

ible flow along with the equation of state (EOS) as,

d ϱ

dt
=− ϱ ∇ ·u, (8a)

du

dt
=−

∇p

ϱ
+ν∇2u, (8b)

p = p(ϱ,ϱo,co), (8c)

where ϱ, u, and p are the fluid density, velocity, and pres-

sure, respectively, ν is the kinematic viscosity, ϱo is the refer-

ence fluid density, and co is the artificial speed of sound in the

fluid. We note that the fluid density, ϱ is independent of the

summation density ρ (eq. (5)). Normally, in SPH simulations
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Name Expression Used in

sym1
(p j+pi)

ρiρ j
∇Wi jm j δ+ SPH53

sym2 m j

(

p j

ρ2
j

+ pi

ρ2
i

)

∇Wi j, WCSPH30,

V 2
i +V 2

j

mi
p̃i j∇Wi j TVF13,37,54, ISPH55

asym
(p j−pi)

ϱi
∇Wi jω j WCSPH48

TABLE I. Different gradient approximations for
∇p
ϱ

. The column

“expression” is assumed to be summed over the index j over all the

neighbor particles inside the kernel support. The term ϱ= ρ for gra-

dient comparison. p̃i j =
piρi+p jρ j

ρi+ρ j
is the density averaged pressure.

these two are treated as the same and we discuss the reasons

behind this choice in section II D. The property, ϱ does not

depend upon particle configuration and should be prescribed

as an initial condition.

There are many different ways to discretize eq. (8) as can

be seen from13,15,16,30,53,56. One of the key features of the dis-

cretization of the momentum equation (eq. (8b)) is to ensure

linear momentum conservation. However, some researchers

trade conservation for better accuracy56 and others use a con-

servative form that is not as accurate16. In view of this, we

consider both conservative and non-conservative discretiza-

tions in the present study.

In table I, we show the various pressure gradient approxi-

mations employed in different SPH schemes. The conserva-

tive forms are usually symmetric therefore are referred as sym,

the non-conservative forms are asymmetric therefore referred

as asym. We compare the error in the gradient approximation

on both PP and UP domains with and without using a cor-

rected kernel gradient in appendix B 1. We observe that only

asym formulations can be corrected using all the corrections

present in the SPH literature. Whereas, sym1 can be corrected

by the Liu correction10 only.

In order to explain this behavior, we take first order Taylor

series approximation of a function, f defined at x about xi

given by,

f (x) = f (xi)+(x−xi) ·∇ f (xi)+H.O.T (9)

integrating both sides with ∇W (x−xi), we get

∫

f (x)∇Wdx =
∫

f (xi)∇Wdx+
∫

(x−xi) ·∇ f (xi)∇Wdx

=
∫

f (xi)∇Wdx+
∫

(∇W ⊗ (x−xi))∇ f (xi)dx.

(10)

Using one point quadrature approximation17, we get

∑
j

f j∇Wi jω j = ∑
j

fi∇Wi jω j +∑
j

∇Wi j ⊗ (x j −xi)∇ f (xi)ω j

=⇒ ∇ f (xi) = ∑
j

( f j − fi)Bi∇Wi jω j,

(11)

where Bi =
(

∑ j ∇Wi j ⊗ (x j −xi)
)−1

is the correction matrix

proposed by Bonet and Lok 9 . Clearly, the first order taylor-

series automatically suggests correction proposed in 9 on an

asym formulation. The eq. (11) is O(h2) accurate27.

On the other hand, the correction proposed by Liu and

Liu 10 , originates by convolving the Taylor series with W (x−
x j) and ∇W (x− x j), and solving all the equation simultane-

ously. The matrix form is given by







Wklωl xlkWklωl ylkWklωl zlkWklωl

Wkl,xωl xlkWkl,xωl ylkWkl,xωl zlkWkl,xωl

Wkl,yωl xlkWkl,yωl ylkWkl,yωl zlkWkl,yωl

Wkl,zωl xlkWkl,zωl ylkWkl,zωl zlkWkl,zωl













fk

fk,x

fk,y

fk,z






=







flWklωl

flWkl,xωl

flWkl,yωl

flWkl,zωl






, (12)

where, k is the destination particle index, l is the neigh-

bor particle index, Wkl,β for β ∈ x,y,z is the kernel gradi-

ent component in the β direction. All the terms containing

l are summed over all the neighbor particles. On solving the

eq. (12), we obtain a first order consistent gradient10. For a

constant field, this method ensures that we satisfy ∑W̃i jω j = 1

and ∑∇W̃i jω j = 0, where W̃ is the corrected kernel. There-

fore, with this correction in both the sym1 and asym forms

the second term (i.e. ∗i) becomes zero, and we get the SOC

approximation. Whereas, in sym2 the term pi/ρ2
i does not

become zero, thus even this correction fails to correct the ap-

proximation.

Using the Taylor series expansion, Fatehi and Manzari 27

derived a correction for the Laplacian operator. In appendix C

we show the error due to operators proposed by Cleary and

Monaghan 26 and Fatehi and Manzari 27 . In appendix B, we

compare gradient, divergence and Laplacian approximation

with corrections proposed by various authors in SPH litera-

ture. The comparison shows that the kernel gradient correc-

tion must be used appropriately for second order convergence.

However, in case of divergence approximation the particle dis-

tribution plays a major role that we discuss next.

C. Considerations for the initial particle distribution

The particle distribution plays an important role in the error

estimation of divergence approximation. In this section, we

use first order Taylor series approximation to obtain error in

divergence approximation as done in previous section. We
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 6

consider a two-dimensional velocity field. We write the error

Er, in the divergence evaluation as

Eri = ∇ ·ui −∑
j

(u j −ui) ·∇Wi jω j, (13)

Using first order Taylor-series expansion of u j about the point

xi,

u j = ui − (xi j ·∇)ui, (14)

we write,

Eri =

(

1−∑
j

xi j

∂Wi j

∂x
ω j

)

∂ui

∂x
+

(

1−∑
j

yi j

∂Wi j

∂y
ω j

)

∂vi

∂y

−∑
j

yi j

∂ui

∂y

∂Wi j

∂x
ω j −∑

j

xi j

∂vi

∂x

∂Wi j

∂y
ω j.

(15)

In the case of a UP domain, in eq. (15), the last two terms

are exactly zero and the coefficient of the first two terms are

of equal magnitude. Furthermore, since for a divergence-free

velocity field, ∂ui

∂x
=− ∂vi

∂y
, the overall error becomes zero. On

the other hand, in a PP domain, the last two terms are of equal

magnitude thus cancel, and the first two terms are different to

the order 10−4 (see appendix B 2) which becomes the lead-

ing error term. Thus, we always get an error of the order of

10−4 even after applying the Bonet correction. As far as we

are aware there are no known SPH discretizations which can

resolve this issue using a simple correction as done in case of

gradients. This is a possible avenue for future research.

D. Minimal requirements for a SOC scheme

In this section, we discuss strategies to obtain a SOC

scheme for weakly compressible fluid flows. We consider the

fluid density as a property, ϱ carried by a particle. The numer-

ical density, ρ , and volume, ω are a function of the surround-

ing particle distribution. The mass, m of the particles satisfies

mi =ϱi Vi = ρiωi where Vi is the physical volume occupied by

the particle and ωi is the numerical volume used for integra-

tion. Thus, we can approximate the fluid density using the

standard SPH approximation given by

ϱi= ∑
j

ϱ j Wi jω j. (16)

In case of weakly compressible SPH, the requirement of

linear momentum conservation condition may be relaxed and

is only satisfied approximately9,56,57. Therefore, we use the

SOC approximations that are non-conservative as discussed

in appendix B. In table II, we list all the discretizations that

we can employ to obtain a SOC WCSPH scheme.

Furthermore, one can solve the fluid flow equations by us-

ing a Lagrangian approach as well as an Eulerian approach.

We discuss the scheme for both these cases in the following

sections.

Operators Possible discretization for SOC

Gradient asym_c, sym1_l

Divergence div_c

Laplacian coupled_c, Fatehi_c, Korzilius

TABLE II. The operators and their discretization suitable for a SOC

scheme (For details refer appendix B).

1. SOC for Lagrangian WCSPH

In the Lagrangian description, the continuity equation and

the momentum equation are given by

d ϱ

dt
=− ϱ ∇ ·u

du

dt
=−

∇p

ϱ
+ν∇2u,

(17)

In order to evaluate the RHS of the above equations, one may

employ any method listed in table II. The pressure is evaluated

using an equation of state given by

p =
ϱo c2

o

γ

((

ϱ

ϱo

)γ

−1

)

, (18)

where γ = 7, ϱo is the reference density, and co is the reduced

speed of sound. We note that the linear equation of state where

in eq. (18), γ = 1, works equally well. We integrate the parti-

cles in time using a Runge-Kutta 2nd order integrator.

Since we use an asymmetric form of the pressure gradi-

ent approximation, particles tend to clump together due to ab-

sence of a redistributing background pressure53. We use the

iterative particle shifting proposed by Huang et al. 12 after ev-

ery few iterations to redistribute the particles. We compute the

shifting vector for the mth iteration (of the shifting iterations)

using

δxm
i = hi ∑

j

ni jWi jω j, (19)

where ni j = xi j/|xi j|. The new particle position,

x̃m+1
i = xm

i +δxm
i (20)

is computed. The particles are shifted until the criterion,

|max(χm)−χo|< ε (21)

is satisfied up to a maximum of 10 iterations, where χm =
h2 ∑ j Wi j, χo is the value for uniform distribution, and ε is an

adjustable parameter. In order to keep the approximation of

the particle O(h2) accurate, we update the particle properties

after shifting by,

φ(x̃i) = φ(xi)+(x̃i −xi) ·∇φ(xi), (22)
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 7

where x̃i is the final position after iterative shifting, φ is the

property to be updated, and ∇φ(xi) is the gradient of the

property on the last position computed with the Bonet cor-

rection. In a variation of the above scheme discussed in sec-

tion II F, we observe that usage of non-iterative PST proposed

by Sun et al. 42 results in slightly higher errors but still re-

tains its SOC. We refer to the scheme discussed above as L-

IPST-C (Lagrangian with iterative PST and coupled_c vis-

cosity formulation). Similarly the method using Fatehi_c
and Korzilius formulation are referred as L-IPST-F and L-

IPST-K respectively. We note that we only perform the IPST

step every 10 timesteps rather than at every timestep.

2. SOC for Eulerian WCSPH

In the Eulerian description, the continuity equation is writ-

ten as

∂ ϱ

∂ t
=− ϱ ∇ ·u−u ·∇ ϱ . (23)

Since the fluid density ϱ is not same as the particle density

ρ we do not ignore this term, this is unlike what is done by

Nasar et al. 41 . The momentum equation is written as

∂u

∂ t
=−

∇p

ϱ
+ν∇2u−u ·∇u. (24)

We discretize all the terms using SOC operators listed in ta-

ble II. We perform time integration using the RK2 integrator;

however, we note that the positions of the particles are not

updated.

E. The effect of co on convergence

In the schemes discussed in the previous section, we im-

pose artificial compressibility (AC) using the EOS, which is

O(M2) accurate38,58, where M = Umax/co is the Mach num-

ber of the flow. Chorin 58 originally proposed this method

to obtain steady-state solutions of an incompressible flow.

Some authors have used artificial compressibility with dual-

time stepping to achieve truly incompressible time-accurate

results59,60. We achieve the incompressibility limit when

co → ∞. Therefore, in order to increase the accuracy at higher

resolution a higher speed of sound must be used. We show the

effect of the speed of sound on accuracy in section III B.

F. Variations of the SOC scheme

In this section, we show that the scheme presented in the

section II D 1 (L-IPST-C) can be easily converted into other

forms for improved accuracy and ease of calculation. We note

that regardless of the set of governing equations employed, the

discretizations from table II must be used to achieve SOC.

In order to remove high frequency oscillations, one could

modify the continuity equation given by,

d ϱ

dt
=− ϱ ∇ ·u+D∇2 ϱ (25)

where, D= δhc2
o is the damping constant, where δ = 0.1. This

corresponds to the δ -SPH scheme36. In this case we also use

the linear equation of state to evaluate p given by

p = c2
o(ϱ− ϱo). (26)

The following are different variations of the basic scheme:

1. Using different PST : One could use either IPST pro-

posed by Huang et al. 12 or the non-iterative PST pro-

posed by Sun et al. 33 . The properties like u,v, p, and ϱ
need to be updated using first order Taylor expansions

given by

φ(x̃i) = φ(xi)+(x̃i −xi) ·∇φ(xi) (27)

where φ is the desired property. We use the coupled

formulation for the viscosity and non-iterative PST. We

refer to this method as L-PST-C.

2. Using pressure evolution: On taking the derivative of

EOS in eq. (26) w.r.t. time and using the eq. (25), we

get the pressure evolution equation given by

d p

dt
=− ϱ c2

o∇ ·u+D∇2 p. (28)

This is very similar to the EDAC pressure evolution37.

The value of ϱ can be evaluated from the EOS in

eq. (26) given by

ϱ=
p

c2
o

+ ϱo . (29)

We employ the coupled formulation for viscosity and

use IPST for regularization. We refer to this method as

PE-IPST-C.

3. Using remeshing for regularization: The regularization

step performed using PST in the L-IPST-C method can

be replaced with the remeshing procedure of Hieber and

Koumoutsakos 40 . The remeshing is performed using

the M4 kernel given by,

M4(q) =











1− 5q2

2
+ 3q3

2
0 ≤ q < 1,

(1−q)(2−q)2

2
1 ≤ q < 2,

0 q ≥ 2,

(30)

where q = |x|/∆s, where ∆s is the initial particle spac-

ing. The properties on the regular grid are computed

using

φ(x̃i) =
∑φ(x j)M4(|x̃i −x j|,h)

∑M4(|x̃i −x j|,h)
, (31)

where x̃ are points on a regular Cartesian mesh. The

remeshing procedure can be performed every few steps;

however, we perform remeshing after every timestep.

We use the coupled formulation for viscosity. We refer

to this method as L-RR-C.
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 8

4. Including regularization in the form of shifting velocity:

the methods of 13, 33, and 34 use shifting by perturb-

ing the velocity of the particles and adding corrections

to the momentum equation. Thus the particles are ad-

vected using the transport velocity, ũ = u+δu and the

displacement is given by,

xn+1
i = xn

i +∆t(ui +δui). (32)

The new continuity and momentum equations are given

by

d̃ ϱ

dt
=− ϱ ∇ ·u+D∇2 ϱ+δu ·∇ ϱ,

d̃u

dt
=−

∇p

ϱ
+ν∇2u+δu ·∇u,

(33)

where
d̃(·)
dt

= ∂ (·)
∂ t

+ ũ · ∇(·). In this method, we em-

ploy SOC approximations mentioned in table II along

with correction proposed in appendix E. We use the PST

proposed in 33 for this scheme along with the coupled

formulation for viscosity. We refer to this method as

TV-C.

5. Eulerian method: The Eulerian method solves the equa-

tion of motion on a stationary grid. This can be derived

using the TV-C method by setting δui = −ui. This

substitution makes the transport velocity in the eq. (32)

equal to zero, thus the particle does not move. The mod-

ified equation on setting δui =−ui in eq. (33), we get

∂ ϱ

∂ t
=− ϱ ∇ ·u+D∇2 ϱ−u ·∇ ϱ,

∂u

∂ t
=−

∇p

ϱ
+ν∇2u−u ·∇u.

(34)

Therefore, we recover the governing equation for the

Eulerian method (See section II D 2). We note that

unlike41, we retain the last term in the continuity equa-

tion. We use the coupled formulation to discretize vis-

cous term. We refer to this method as E-C.

III. RESULTS AND DISCUSSIONS

In this section, we compare the solution obtained from dif-

ferent schemes for the Taylor-Green, Gresho-Chan vortex, and

incompressible shear layer problems. We first compare the L1

error in velocity, pressure, and linear and angular momentum

conservation of the L-IPST-C with various existing schemes.

In order to observe the effect of co on the convergence, we

solve the Taylor-Green problem with different speeds of sound

using the L-IPST-C and L-IPST-F schemes. For the highest

value of co = 80m/s, we compare the results using different

variations of the SOC schemes. In order to observe the conser-

vation property, we compare the solutions for inviscid prob-

lems viz. incompressible shear layer and Gresho-Chan vor-

tex using existing schemes as well as the SOC schemes. Fur-

thermore, we compare the SOC scheme and existing schemes

for long time simulations for all the test cases. Finally, we

compute the cost of computation versus accuracy for all the

schemes.

We implement the schemes using the open source PySPH61

framework and automate the generation of all the figures pre-

sented in this manuscript using the automan framework47.

The source code is available at https://gitlab.com/
pypr/convergence_sph.

A. Comparison with existing SPH schemes

In this section, we compare the following schemes:

1. TVF : Transport velocity formulation proposed by

Adami, Hu, and Adams 13 .

2. δ+SPH : The improved δ -SPH formulation proposed

by Sun et al. 33 .

3. EDAC : Entropically Damped artificial compressibil-

ity SPH formulation proposed by Ramachandran and

Puri 37 .

4. EWCSPH : The Eulerian SPH method proposed by

Nasar et al. 41 .

5. L-IPST-C : The Lagrangian method with iterative PST

and coupled_c viscosity formulation discussed in sec-

tion II D 1.

In order to compare these schemes, we consider the Taylor-

Green vortex problem. We choose this problem, since it is

periodic, has no solid boundaries, and admits an exact solution
1. The solution of the Taylor-Green problem is given by

u =−Uebt cos(2πx)sin(2πy),

v =Uebt sin(2πx)cos(2πy),

p =−0.25U2e2bt(cos(4πx)+ cos(4πy)),

(35)

where b = −8π2/Re, where Re is the Reynolds number of

the flow. We consider Re = 100 and U = 1m/s. For the La-

grangian schemes, we consider a perturbed periodic (PP) ar-

rangement of particles shown in the fig. 1 for different resolu-

tions. At t = 0 we initialize the pressure p and velocity (u,v)
using eq. (35) for all the schemes. Since the fluid density ϱ is

a function of pressure, we initialize density inverting eq. (18).

In the case of the EWCSPH scheme, we consider an unper-

turbed periodic (UP) arrangement of particles and initialize

the ρ using the prescribed pressure. We compute the L1 error

in pressure and velocity by

L1( f ,h) = ∑
j
∑

i

| f (xi, t j)− fo(xi, t j)|

N
∆t (36)

1 In this paper, we do not consider solid boundaries since to our knowledge,

no second-order convergent boundary condition implementations exist in

the SPH literature. Therefore the error due to the boundary will dominate.

In order to show the convergence with solid boundary, we study one popu-

lar boundary condition62,63 in appendix D.
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 9

Name FT

Fmax
Tr L1(|u|)(O) L1(p)(O)

δ+SPH 2.19e-05 1.49 5.69e-05(0.00) 2.03e-01(0.00)

EDAC 1.88e-07 1.32 1.68e-05(-1.24) 7.00e-05(-0.07)

EWCSPH 7.03e-15 2.25 3.13e-07(0.38) 2.10e-05(0.00)

L-IPST-C 1.34e-05 3.36 1.18e-07(1.42) 6.41e-05(0.00)

TVF 3.70e-16 1.00 9.45e-04(-0.88) 2.88e-01(-0.07)

TABLE III. Table showing total force w.r.t. the maximum force in

the domain and the time taken for 1 iteration w.r.t. the TVF scheme

for all the schemes.

where, h = h∆s∆s is the smoothing length of the kernel, ∆t

is the timestep, N is the total number of particles in the do-

main, f is either pressure or velocity, and fo is the exact

value obtained using eq. (35). The particle spacing, ∆s is

set according to the resolution. We consider resolutions of

50×50 to 500×500 particles in a 1m×1m periodic domain.

In order to isolate the effect of spatial approximations on

the convergence, we set the timestep ∆t = 0.3h/(Umax + co),
where h = 1.2/500m is set corresponding to highest resolu-

tion, co = 10U , for all the simulations. We run all the simula-

tions for 1 timestep and observe convergence. We choose one

timestep since most of the schemes considered diverge.

In the fig. 3, we plot the L1 error evaluated using eq. (36)

for pressure and velocity in the domain for different schemes.

Clearly, none of the schemes show convergence in pressure.

This is because the initial velocity is divergence-free, so there

is no change in density and thereby pressure. We observe that

the EDAC, EWCSPH, and L-IPST-C schemes are almost four

orders more accurate than the TVF and δ+SPH schemes. In

case of both the TVF and δ+SPH schemes, we link the pres-

sure with particle density ρ , which is a function of the particle

configuration. The particle positions are a result of the parti-

cle shifting, and therefore, the pressure is incorrectly captured.

On the other hand, the other schemes either use a pressure evo-

lution equation (EDAC) or a fluid density to evaluate pressure.

In the case of the EWCSPH scheme, we initialize density us-

ing the pressure values in the eq. (18) which results in better

accuracy.

The L1 error in velocity diverges in the case of the TVF

and EDAC schemes since these use a symmetric form of

type sym2 in table I to discretize the momentum equation.

Whereas, in the case of the δ+SPH scheme, sym1 type of dis-

cretization is employed leading to less errors. Moreover, the

δ+SPH scheme uses a consistent formulation and both TVF

and EDAC schemes are inconsistent when the shifting (trans-

port) velocity is added to the momentum equation33. The

EWCSPH, and L-IPST-C formulations show convergence (not

second-order) as expected. We observe that in the velocity

convergence a constant leading error term dominates resulting

in flattening at higher resolutions. Since, we use second-order

accurate formulations in L-IPST-C and EWCSPH 2 formula-

tions, the only equation which is not converging with resolu-

tion is the equation of state (EOS).

2 It is second-order accurate since a uniform stationary grid is used.

In this section, we focus on highlighting the effect of using

fluid density ϱ different than the numerical density ρ . It allows

for a superior convergence rate and independence of density

from particle positions. In contrast to this, the use of numeri-

cal density as a function of particle position is consistent with

the volume used for the SPH approximation. In TVF, δ+SPH,

EDAC and, EWCSPH schemes, there is no such distinction,

i.e. ϱ= ρ and we use this density to compute numerical vol-

ume ω j = m j/ρ j. The poor convergence for these schemes

show that it is important to treat the fluid and numerical den-

sities differently.

We also compare the linear momentum conservation and

time taken to evaluate the accelerations for the case with

500×500 particles. As shown in Bonet and Lok 9 , linear mo-

mentum is conserved when the total force, ∑i Fi = 0, where the

sum is taken over all the particles and Fi =
∇pi

ϱi
+ ν∇2ui. In

the table III, we tabulate the total force and the time taken by

the scheme for one timestep with the errors and order of con-

vergence in pressure and velocity for the 500×500 resolution

case. It is clear that the TVF and EWCSPH schemes con-

serve linear momentum, and the TVF scheme takes the least

amount of time. The EDAC and the δ+SPH scheme do not

conserve linear momentum exactly. In the case of the EDAC

scheme the use of average pressure in the pressure gradient

evaluation results in lack of conservation. Whereas, in the

case of δ+SPH the asymmetry of the shifting velocity diver-

gence causes lack of conservation. The L-IPST-C scheme is

known to be non-conservative; however, the value is compara-

ble to other schemes. The time taken by the L-IPST-C scheme

is significantly higher due to the evaluation of correction ma-

trices.

B. Convergence with varying speed of sound

Name FT

Fmax
Tr L1(|u|)(O) L1(p)(O)

L-IPST-C co = 20 7.13e-05 1.00 2.03e-04(1.38) 3.66e-03(0.93)

L-IPST-C co = 40 9.31e-05 2.15 7.94e-05(1.78) 2.09e-03(1.60)

L-IPST-C co = 80 1.44e-04 3.76 5.32e-05(1.93) 2.98e-03(1.85)

L-IPST-F co = 20 7.11e-05 1.23 1.80e-04(0.85) 3.77e-03(0.73)

L-IPST-F co = 40 5.99e-05 2.84 4.81e-05(1.44) 2.54e-03(1.31)

L-IPST-F co = 80 1.66e-04 5.46 1.36e-05(1.98) 3.52e-03(1.65)

TABLE IV. Comparison of total force, time taken relative to the L-

IPST-C with co = 20m/s, L1 error in velocity and order for different

values of co.

In this section, we compare the convergence of the L-IPST-

F and L-IPST-C scheme with change in AC parameter i.e. the

speed of sound co. We consider the Taylor-Green problem;

however, we run the simulation for t = 0.5s. In fig. 4, we plot

the L1 error in the pressure and velocity for both the schemes

and different co. We observe that both L-IPST-C and L-IPST-

F methods are affected by the change in co value significantly

as expected. In case of pressure, with the increase in the co

value, the error in the lower resolutions increases; however,

the convergence is monotonic. Clearly, we attain the increase
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 10

FIG. 3. Convergence of L1 error in pressure (left) and velocity (right) with the change in resolution. The Re = 100, co = 10, ∆t = 6.54×10−5

and only 1 timestep taken.

FIG. 4. Convergence rates for pressure (left) and velocity (right). The L-IPST-C and L-IPST-F methods are compared for different values of

co.

in the order of convergence in case of the pressure due to in-

creased error scales at lower resolutions. The increase in error

is attributed to the inability of the SPH operators to correctly

capture a divergence free velocity field as discussed in sec-

tion II C. However, on looking at the velocity convergence,

both the schemes attain SOC even at higher resolutions. We

observe, though, at lower resolutions, the error in the pres-

sure increases with the co value. As observed in the case of

the Laplace operator comparison in B 3, the use of Fatehi_c
discretization offers better accuracy.

In the table IV, we tabulate the total force, relative time, and

the L1 error in pressure and velocity with the order of conver-

gence for 500× 500 particles. We observe that at a higher

co value, the total force is higher compared to the simulation

when co values are lower. From the table, we can see that the

use of L-IPST-F scheme offers better accuracy at the cost of

the extra time taken. However, the order of improvement in

case of pressure is small. We also note that one can choose

to use lower values of co at lower resolutions and increase the

value as the resolution increases to get the same rate of con-

vergence in velocity and better accuracy in pressure.

C. Comparison of SOC variants

In this section, We simulate the Taylor-Green problem us-

ing co = 80m/s for a duration of 0.5s with different resolu-

tions discussed in section II F. In addition, we study the per-
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 11

FIG. 5. Convergence rates for pressure (left) and velocity (right) of different variants of SOC schemes a.

a The cause of the non-monotonic behavior of the TV-C in the figure is not known but the result is reproducible.

Name FT

Fmax
Tr L1(|u|)(O) L1(p)(O)

E-C 8.13e-15 1.19 5.11e-05(1.94) 1.50e-03(0.71)

EWCSPH 1.07e-14 1.00 3.25e-05(1.57) 1.13e-02(-0.20)

L-IPST-C 1.44e-04 1.53 5.32e-05(1.93) 2.98e-03(1.85)

L-PST-C 2.64e-06 2.02 7.31e-05(1.84) 8.93e-03(1.68)

L-RR-C 1.51e-18 1.41 3.74e-05(1.92) 9.11e-04(0.65)

PE-IPST-C 6.17e-05 1.65 5.05e-05(1.96) 3.01e-03(1.84)

TV-C -5.01e-06 1.88 1.06e-04(2.18) 1.51e-02(2.14)

TABLE V. Comparison of total force, time taken relative to L-IPST-

C with co = 20, L1 error in velocity and pressure for variation of

schemes with co = 80.

formance of the EWCSPH scheme since it is computation-

ally efficient and accurate. In the fig. 5, we plot the error in

pressure and velocity for all the schemes. In the table V, we

tabulate the total force, relative time, L1 error in pressure and

velocity at 500×500 resolution, and the order of convergence.

The L-IPST-C and PE-IPST-C overlap in both the pressure

and velocity convergence plots, and these are both approxi-

mately second-order. Compared to L-IPST-C, the L-PST-C

shows lower convergence rate, and TV-C shows higher or-

der of convergence, whereas E-C and L-RR-C show very poor

convergence rates in pressure; however, the L-RR-C method

shows very low errors in pressure. The EWCSPH has a neg-

ative convergence rate in pressure. While the TV-C shows

a high convergence rate, it has much larger errors than all

the other schemes considered for both pressure and velocity.

The E-C, L-IPST-C, L-RR-C, and PE-IPST-C show high con-

vergence rates in velocity as expected. The L-PST-C shows

slightly high error and 1.84 convergence rate. The EWCSPH

shows a lower convergence rate of 1.57 but is the most accu-

rate of all the schemes regarding the velocity error.

The TV-C scheme shows low accuracy since we perform

the shifting using an additional term in the momentum equa-

tion compared to the PE-IPST-C and L-IPST-C. This decrease

in accuracy is also visible in the case of velocity. The L-PST-

C scheme show higher error suggesting that the non-iterative

PST does not perform the required amount of regularization.

Both L-RR-C and E-C are comparable and most accurate.

These schemes have lower error since the particles are fixed

on a cartesian grid resulting in accurate computation of diver-

gence as discussed in section II C. The pressure convergence

flattens since it reaches the limit of accuracy possible with this

value of co = 80m/s and further accuracy may be seen by in-

creasing this further.

Clearly, the total force in case of E-C, L-RR-C, and EWC-

SPH scheme is zero since we compute the acceleration on a

uniform Cartesian grid of particles. However, the total force

in other schemes are accurate to order 10−5. The times taken

shows that L-PST-C is the highest since we apply the PST at

every timestep, the TV-C involves many terms in the equations

and therefore takes a lot of time. The E-C, and EWCSPH take

the least time since they do not use a PST 3. The L-RR-C,

L-IPST-C, and PE-IPST-C take a similar amount of time.

D. Comparison of conservation errors

Thus far, we have looked at the convergence of the vari-

ous schemes. In this section, we look at the schemes listed

in table V from the perspective of conservation of linear and

angular momentum. We solve Gresho vortex and incompress-

ible shear layer using all the schemes discussed.

3 These methods can be made even faster since the neighbors need not be

updated, and the correction matrices can also be computed once and saved.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
9
8
3
5
2



Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 12

1. The Grehso vortex

We consider the Gresho vortex problem45, which is an in-

viscid incompressible flow problem having the pressure and

velocity fields given by,

p(r),uφ (r)=











12.5r2 +5,5r 0 ≤ r < 0.2,

12.5r2 −20r+4ln(5r)+9,2−5r 0.2 ≤ r < 0.4

3+4ln(2),0 0.4 ≤ r

(37)

FIG. 6. The velocity of particles with the distance from the center of

the vortex (left) and the x-component of the total linear momentum

(right) for all the schemes.

We consider an unperturbed periodic domain of size 1× 1

with the center at (0,0). We set the kinematic viscosity, ν = 0,

and the time step and other properties as done in the Taylor-

Green problem. The problem is simulated until t = 3s. Since

the problem is inviscid, we expect the scheme to retain the

velocity and pressure field. We do not use artificial viscosity

in the simulations for any of the schemes. However, we use

density or pressure damping as given in eq. (25) or eq. (28),

respectively in order to reduce the pressure oscillations. With-

out this the solution becomes unstable in a short amount of

time. We perform the simulation of all the schemes listed in

FIG. 7. The velocity of particles with the distance from the center of

the vortex (left) and the the x-component of the total linear momen-

tum (right) for the variation of SOC scheme.

table III except the EWCSPH scheme 4. We note that using an

initial perturbed particle configuration results in very diffused

results for all schemes except the L-IPST-C.

In the fig. 6, we plot the velocity of the particles with the

distance, r from the center (on left) and the x-component of

the total linear momentum with time for a 100× 100 particle

simulation. The L-IPST-C scheme retains the velocity profile

very well. The δ+SPH, EDAC, and TVF schemes show dif-

fusion due to inaccuracy in the pressure gradient evaluation.

Except for the TVF scheme, the rest show a finite increase in

the momentum bounded at 10−4. Clearly, approximate linear

momentum conservation is sufficient to obtain accurate results

in the case of weakly compressible flows.

We also perform the simulations with different versions

of the SOC scheme listed in table V 5. In the fig. 7, we

plot the velocity with the distance from the center and the x-

component of the linear momentum with time for 100× 100

particle simulation. Clearly, all the schemes are accurate and

4 We discuss the failed simulations are discussed in the appendix F.
5 The L-RR-C, TV-C, and E-C scheme fail to complete the simulation, and

these are discussed in the appendix F
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 13

approximately conserve linear momentum as expected.

FIG. 8. The angular momentum variation with time for Gresho-Chan

vortex for different schemes.

In fig. 8, we show the angular momentum variation with

time for different schemes. None of the schemes conserve

angular momentum, but for the SOC schemes, the variations

are very small and O(5×10−4).

2. The incompressible shear layer

The incompressible shear layer simulates the Kelvin-

Helmholtz instability in an incompressible flow. This test

case produces non-physical vortices for the schemes where

the operators are under resolved even when the scheme is

convergent46. The initial condition for the velocity in x di-

rection is given by

u =

{

tanh(ρ(y−0.25)) y ≤ 0.5,

tanh(ρ(0.75− y)) y > 0.5,
(38)

where ρ = 30. In order to begin the instability, a small veloc-

ity is given in y direction,

v = δ sin(2πx), (39)

where δ = 0.05. We consider a small viscosity ν = 1/10000.

We simulate the problem using all the schemes listed in ta-

ble III. In fig. 9 and fig. 10, we plot the vorticity field for the

schemes 6 discussed in this paper. We note that unlike the in-

viscid problem of Gresho-Chan vortex, the scheme EWCSPH,

TV-C and E-C shows results matching other SOC schemes. In

fig. 9, we observe that TVF scheme and δ+SPH scheme show

high frequency oscillations and while the EDAC scheme is

much better; However, it shows some undesirable contours

surrounding the eye of the vortex in blue color.

FIG. 9. Vorticity contour plot for 500× 500 resolution for all the

schemes.

E. Long time simulations

In this section, we study the conservation for long time sim-

ulations using the EDAC, TVF, and L-IPST-C schemes. We

6 The L-RR-C method failed to run due to discontinuity in the initial velocity

field.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
9
8
3
5
2



Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 14

FIG. 10. Vorticity contour plot for 500× 500 resolution for all the

schemes.

consider the Taylor-Green, Gresho-Chan, and Poiseuille flow

problem with the same condition as before. We consider a UP

particle distribution for all the schemes.

We simulate the Taylor-Green problem for 5s at Re = 100

compared to the final time of 0.5s in the previous simulations

for all the schemes. In fig. 11, we plot the velocity damping

and the kinetic energy of the flow as a function of time. The

TVF scheme shows a significant deviation from the exact re-

sult whereas the kinetic energy remains close to other scheme

solutions. We note that TVF scheme conserves linear momen-

tum exactly.

We next simulate the Gresho-Chan vortex problem for 7s

compared to the final time of 3s in section III D 1. In fig. 12,

we plot the velocity as a function of r, and the linear and an-

gular momentum with respect to time for all the schemes. We

observe that the TVF scheme does not capture the physics of

the problem however conserves linear momentum but does not

conserve angular momentum. In case of the EDAC scheme,

the physics is captured better. The linear momentum is not

conserved, and the solution loses angular momentum by a

small amount, and the peak of the velocity distribution is

FIG. 11. The maximum velocity decay and kinetic energy of the flow

with respect time for Taylor-Green problem.

not captured accurately. The L-IPST-C scheme retains the

velocity field, and both the linear and angular momentum

are approximately conserved. After 7 seconds the L-IPST-

C schemes is no longer stable, and the velocity field is not

captured accurately.

In the last test case, we simulate the Poiseuille flow problem

for 100s compared to 10s in appendix D. In the fig. 13, we

plot the x-component of the velocity and the kinetic energy

of the flow with time. Clearly, all the results are similar. In

case of L-IPST-C a slight deviation is observed near the wall

due to approximation done near the wall (See appendix D for

details).

These simulations suggests that even if a scheme is conser-

vative like TVF it may not produce accurate results. How-

ever, for a convergent scheme like the L-IPST-C the results

are accurate and despite there being no exact conservation an

approximate conservation is seen.

F. Cost of computation

In this section, we compare the cost of computation of all

the schemes considered in this study. We simulate the Taylor-

Green problem for 5000 timesteps with 50, 100, and 200 reso-
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FIG. 12. The velocity of particle with distance from the center, linear

and angular momentum with respect to time for Gresho-Chan vortex

problem.

lutions for all the schemes. We use an Intel(R) Xeon(R) CPU

E5-2650 v3 processor and execute all the simulations in serial.

In fig. 14, we plot the L1 error in velocity computed using the

eq. (36) as a function of time taken for the simulation. Clearly,

all the SOC schemes are close to each other in terms of errors.

The E-C and EWCSPH scheme takes very little time and are

very accurate; however, EWCSPH is not convergent in pres-

sure as shown in section III A. The EDAC scheme has lower

error comparable to the SOC schemes; however, its conver-

FIG. 13. The x-component of the velocity across the plate and the

kinetic energy of the flow with time for Poiseuille flow problem.

gence rate reduces with increase in resolution. We show that

despite having higher time taken by the SOC schemes, they

achieve higher accuracy with a fewer number of particle. For

some schemes, these accuracy levels are not achievable at all.

IV. CONCLUSIONS

In this paper, we have performed a numerical study of the

accuracy and convergence of a variety of SPH schemes in the

context of weakly-compressible fluids. Based on the numer-

ical study performed in the previous sections, we summarize

the key findings below.

A. Choice of smoothing kernel

We first considered the SPH approximation of a function

and its derivative using different kernels. All the kernels con-

sidered here show second-order convergence when the sup-

port radius is suitably chosen. The accuracy is marginally af-

fected by the change in type of kernel. The smoothing error

of an SPH approximation scales as O(h2) and this necessitates

that the smoothing length of the kernel be as small as possi-
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FIG. 14. The L1 error in velocity with respect to the time taken to evaluate 5000 timesteps for all the schemes discussed in the previous

sections.

ble. This implies that h∆s be small. As is well known, the

discretization errors scale as O((∆s
h
)β+2) and this necessitates

that the smoothing radius be larger. These two requirements

are contradictory. We find that by using a modest h = 1.2∆s,

along with the kernel corrections of Bonet and Lok 9 or Liu

and Liu 10 we are able to obtain close to second-order con-

vergence for the kernels considered in this work. It holds up

to a resolution of L/∆s = 500, where l = 1m which appears

to be among the highest resolutions we have seen in the lit-

erature concerning the convergence of SPH methods. In the

literature, we find kernels like the cubic spline to demonstrate

pairing instabilities44. We can avoid this instability by using a

particle shifting technique (PST).

B. Choice of suitable operators

The SPH approximation of operators like the gradient, di-

vergence, and Laplacian must be chosen carefully. In this pa-

per, we recommend two methods for gradient approximation

and three methods for viscous term approximation that en-

sure second-order convergence. The approximations which

ensure pair-wise linear momentum conservation are always

divergent. In the future, one could explore pair-wise linear

momentum conserving and second-order convergent SPH ap-

proximation in a perturbed domain using SPH. Furthermore,

the widely used artificial compressibility assumption makes

the scheme O(M2) accurate. We recommend using high co

values or a dual-time stepping criteria to achieve convergence.

Solving the pressure using the pressure Poisson equation may

also provide SOC, although those have not been studied in this

work.

C. Particle density and fluid density

We recommend that one employ the fluid density in the

governing differential equation as a property that convects

with the particle. The approximation of the SPH operators

should not be a function of a property of the fluid i.e. density.

We obtain the integration volume by eq. (6) where the mass

and kernel support radius of particles is kept constant. In the

future, it would be important to explore the convergence of

SPH operators when the mass as well as the support radius

of the particles are varying as required by an adaptive SPH

algorithm.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
9
8
3
5
2



Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 17

D. SOC scheme and variations

We demonstrate Eulerian as well as Lagrangian SPH

schemes that are second-order convergent. We show that the

Eulerian schemes captures the divergence accurately due to

symmetry in the particle distribution resulting in better ac-

curacy in pressure. We derive a pressure evolution equation

using the continuity equation that resembles the EDAC SPH

scheme in literature. We show that the PST step in the La-

grangian method can be replaced by a remeshing step which is

another moment conserving regularization. However, remesh-

ing is not stable in the presence of jumps in the properties as

observed in the case of the Gresho vortex (see appendix F)

and incompressible shear layer. The PST step can be in-

cluded in the momentum equation resulting in the δ+SPH

scheme. From the δ+SPH method, one can obtain the Eule-

rian form of WCSPH method by setting the shifting velocity

to −u. All these schemes are SOC when we use a second-

order convergent approximation for the operators. We show

that even though the schemes are non-conservative in the ab-

solute sense, approximate conservation also produces accurate

results in the case of incompressible flows.

Thus, by a judicious choice of discretization, particle shift-

ing, and a separation of the fluid and particle densities we

have shown that second-order convergence is possible using

the SPH method for weakly-compressible flows. We do ob-

serve that the SPH discretization of the divergence operator

introduces errors for divergence-free fields which are notice-

ably absent in the case of an Eulerian method due to the sym-

metry of the particle distribution. This introduces significant

errors into the pressure; it would be valuable to develop more

accurate divergence operators for the Lagrangian case.

Given that the proposed schemes are second-order, it would

be important to study the boundary conditions employed in

the SPH to see how they affect the accuracy and order of con-

vergence. A preliminary analysis performed in appendix D

suggests that a popular solid-wall boundary condition62,63 is

not second order convergent. The accuracy of the boundary

conditions will be investigated in the future.

A similar analysis in the context of variable smoothing

length, and mass would be very useful in light of many re-

cent developments of adaptive SPH methods64 One concern

of note is the increased computational effort required to main-

tain second-order convergence and future developments in this

area would be important for practical simulation using the

SPH method.

Appendix A: Comparison of kernels

We consider the set of kernels listed in table VI. It covers a

wide range (high order, kernels having tensile instability and

pairing instability44,65). In order to assess the effect of h∆s for

a kernel, we perform the numerical experiment proposed by

Dehnen and Aly 44 . We evaluate particle density using eq. (5)

for increasing the number of neighbors Nnbr, for each of the

kernels. The increase in Nnbr corresponds to the scaling of the

smoothing kernel using the h∆s parameter. In this numerical

Name Radius β Remark

G - Gaussian48 3 0 Truncated for low Nnbr

QS - Quintic spline37 3 3 Tensile instability

CS - Cubic spline48 2 5 Paring and tensile instability

WQ2 - Wendland O(2)49 2 5 No tensile or pairing instability

WQ4 - Wendland O(4)49 2 8 Produces higher accuracy

WQ6 - Wendland O(6)49 2 11 Produces higher accuracy

TABLE VI. Kernels and their properties

experiment, we change both the resolution and h∆s.

FIG. 15. The particle density for different kernels with varying num-

ber of neighbors

In the fig. 15, we plot the absolute error in the particle

density of one particle in an UP domain for different kernels

with the change in Nnbr under the kernel support. Clearly, the

Wendland class of kernel shows a monotonic decrease in error

with the increasing Nnbr. However, in the case of the G and

QS kernels, the errors are an order less at a lower Nnbr com-

pared to Wendland class of kernels. The error in the G kernel

does not change significantly with the change in the Nnbr com-

pared to others. It is because we truncate the G kernel to have

compact support. In the QS, the error is lower than the WQ4

in the entire plot. Therefore, we drop WQ2 and WQ4 in the

subsequent investigations since it reaches the order of accu-

racy of QS when Nnbr is approximately 60. High Nnbr results

in higher computational cost.

We compare the four kernels G, CS, QS and WQ6 for con-

vergence of function and its gradient approximation. We con-

sider the field,

f = sin(π(x+ y)). (A1)

Given a function go and its approximation g, we evaluate the
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 18

FIG. 16. Order of convergence for the approximation of a function

for different h∆s values in an UP domain. The dashed line shows the

second order rate.

FIG. 17. Order of convergence for derivative approximation for dif-

ferent h∆s values in an UP domain. The dashed line shows the second

order rate.

L1 error using,

L1 =
∑

N
i |g(xi)−go(xi)|

∑
N
i |go(xi)|

, (A2)

where N is the total number of particles in the domain. Since

FIG. 18. Order of convergence for function approximation for dif-

ferent h∆s values in a PP domain. The dashed line shows the second

order rate.

FIG. 19. Order of convergence for the derivative approximation for

different h∆s values in a PP domain. The dashed line shows the sec-

ond order rate. The eq. (A3) is used for the approximation.

the CS and WQ6 kernels have support radius of 2 whereas, the

G and QS kernel have support radius of 3, we set the h∆s such

that the Nnbr is same in an UP domain. Therefore, when h∆s =
1.0 for QS (or G), we take h∆s = 1.5 for the CS (or WQ6).

For the convergence study, in this paper, we consider 50×50,
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 19

100× 100, 200× 200, 250× 250, 400× 400, and 500× 500

resolutions for all the test cases unless stated otherwise.

1. Unperturbed periodic domain

In fig. 16, we plot the L1 in the function approximation as

a function of the resolution for different values of h∆s in a UP

domain. We observe similar error values for all the kernels

except CS. We obtain second-order convergence (SOC) in an

UP domain upto a considerably high resolution of 500× 500

as expected, for all the kernels6.

In fig. 17, we plot the L1 error in the derivative approxima-

tion of the function in eq. (A1) in a UP domain. The G and QS

kernels show a better convergence rate compared to CS and

WQ6 for lower h∆s. The G kernel does not show SOC even

at h∆s = 2.5, since we use a truncated Gaussian. The CS and

WQ6 kernel shows SOC only when h∆s ≥ 3.0. The QS kernel

shows SOC at h∆s > 1.5 however, a reasonable convergence

can be seen for h∆s = 1.2 as well.

2. Perturbed Periodic domain

In an SPH simulation, the particles advect with different

velocities, and thus the distribution of particles is no longer

uniform. Some particle shifting techniques (PST) can be used

to make the particle distribution uniform31,32. Thus, it is es-

sential to observe the convergence rate in the PP domain as

well.

In fig. 18, we plot the L1 error of the approximation of the

field given in eq. (A1) as a function of resolution in a PP do-

main for different h∆s values. The convergence rates tend to

zero for higher resolution for low value of h∆s for all the ker-

nels. The WQ6 kernel performs worse than the CS kernel at

lower h∆s values however, the errors are significantly lower in

WQ6 when the h∆s value increase. On comparing G and QS,

the error plot looks exactly same except when h∆s = 1.0.

The SPH approximation of the gradient of a function is

not even zero order accurate in a perturbed domain6,66. The

derivatives diverge when we evaluate it using eq. (3). We use

a zero order consistent method proposed by Monaghan 1 to

compare the kernels. We write this approximation as,

⟨∇ f (xi)⟩= ∑
j

( f (x j)− f (xi))∇Wi jω j. (A3)

In fig. 19, we plot the L1 error in the function derivative

approximation as a function of resolution using eq. (A3) in

a PP domain for different h∆s values and kernels. Clearly,

the approximation for all the kernels shows at least zero-order

convergence. The G kernel does not show SOC for high h∆s

which is the same as observed in the case of the UP domain.

The accuracy in the case of QS and CS oscillates when go-

ing from lower h∆s to higher values. Zhu, Hernquist, and Li 5

suggest that one should increase the h∆s as one increases the

resolution but given the inconsistent behavior of the CS and

QS kernels; these may not be suitable for that approach. The

Name FT

Fmax
Tr L1(O)

asym_bc 0.01 1.97 4.45e-04(1.98)

asym 0.00 1.00 4.02e-03(0.07)

sym1_bc 0.01 1.87 3.06e-01(-0.55)

sym1_lc 0.01 2.35 4.45e-04(1.98)

sym1 -0.00 1.05 3.06e-01(-0.55)

sym2_bc 0.01 1.87 3.06e-01(-0.55)

sym2_lc -0.00 2.43 3.06e-01(-0.55)

sym2 -0.00 1.01 3.06e-01(-0.55)

sym_sl -0.00 2.50 2.59e-01(-0.56)

TABLE VII. The ratio FT

Fmax
showing the total force in the system

due to lack of conservation in the approximation, the time taken Tr

relative to the asym formulation, the L1 error for 500× 500 particle

in a PP domain, and last column shows the order of convergence for

all the kind of formulations considered in the first column.

zero-order convergence rate occurs due to dominance of dis-

cretization error (the term
(

∆s
h

)β+4
in eq. (3)) when the reso-

lution increases in the PP domain.

Appendix B: Comparison of discretization operators

1. Comparison of ∇p
ϱ

approximation

In this section, we compare various pressure gradient ap-

proximations. In the table I, we list the gradient approxi-

mations considered in this study. The sym1 and sym2 are

the symmetric, conservative form of the gradient approxima-

tion. We note that conservative forms have ϱ= ρ . The asym
is the asymmetric form. Since the SPH kernel gradient does

not show SOC in a perturbed domain4, we also consider the

kernel correction employed to each of the approximation. In

this paper, we refer to the correction proposed by Bonet and

Lok 9 as Bonet correction and the one proposed by Liu and

Liu 10 as Liu correction. We add the suffix _bc, and _lc re-

spectively in the plots and tables to indicate these corrections.

The application of corrections renders the symmetric forms

non-conservative, we use the method of symmetrization of the

kernel proposed by Dilts 17 to again make it conservative. We

refer to this formulation as sym_sl which we write as

∑
j

m j

p j + pi

ρ jρi

(Li∇Wi j −L j∇Wji), (B1)

where Li is the Liu correction applied to the kernel gradient 7.

This formulation is used in the scheme proposed by Frontiere,

Raskin, and Owen 16 .

In order to compare the convergence, we consider a pres-

sure field, p = sin(π(x+y)). We determine the L1 error using

7 We select the sym1 formulation over sym2 as the latter does not perform

well with the linear correction (see section II B for details).
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Techniques for second order convergent weakly-compressible smoothed particle hydrodynamics schemes without boundaries 20

FIG. 20. The rate of convergence in UP (left) and PP(right) domains for various pressure gradient listed in table I. The dashed line shows the

SOC rate. The _bc and _lc suffixes represent the corresponding form with Bonet correction9 and Liu correction10. The sym_sl is the sym1

formulation with symmetrization of kernel proposed in Dilts 17 .

eq. (A2), where g(xi) is the pressure gradient evaluated us-

ing the approximation and go(xi) is the exact pressure gradi-

ent. The exact pressure gradient, ∇p = π cos(π(x+y))(î+ ĵ).
We compare only the x-component of the results. In fig. 20,

we plot the error in the various gradient approximations dis-

cussed above in both an UP and PP domain. In the UP domain,

barring the sym2_lc, all the corrected gradient approxima-

tions behave the same, whereas the uncorrected gradients do

not display SOC. The corrected versions retains SOC even at

high resolution since it reduces the discretization error in the

approximation4,27. We also observe that with the correction

the second term involving the pi term is zero in an UP domain

leading to the same expression.

In the case of the PP domain, we observe that both sym1 and

sym2 and their corresponding _bc versions overlap. The sym-

metric formulations show an increase in the error in the ap-

proximation with increasing resolution as suggested in Fatehi

and Manzari 27 . Furthermore, as discussed in section IV, the

Bonet correction does not correct the symmetric formulations.

Clearly, the asym formulation shows better convergence, and

the Bonet correction version shows SOC. Therefore, the Bonet

correction can be applied only when an asymmetric formula-

tion is employed. Moreover, the Liu correction only corrects

the symmetric form sym1, which suggests that the sym2 can-

not be corrected using traditional correction techniques. Fi-

nally, the sym_sl method has a slightly lower error but looses

SOC behavior due to the symmetrization of the kernel gradi-

ent. Frontiere, Raskin, and Owen 16 reported the similar be-

havior.

We also compare the linear momentum conservation and

time taken to evaluate the gradient for the case with 500×500

particles. As shown in Bonet and Lok 9 , linear momentum is

conserved when the total force, ∑i Fi = 0, where the sum is

taken over all the particles and Fi =
∇pi

ϱi
. In table VII, we tab-

ulate the ratio of total force to the maximum force (max(Fi)),
the time taken to evaluate the gradient scaled by the minimum

time taken by all the methods, and the L1 error with the order

of convergence 8, for all the formulations plotted in fig. 20.

As expected, all the symmetric forms of approximation have

zero total force. The asymmetric formulation has a very small

total force. Clearly, the use of Bonet corrections increases the

total force and slows down the computation by a factor of 2,

whereas the Liu correction makes it 2.4 times slower. The

sym_sl formulation shows zero residual force as expected.

Using the table VII, we can see that asym_bc and sym1_lc
show SOC and have a very low total force which makes them

a suitable candidate for a scheme with SOC.

2. Comparison of ∇ ·u approximation

A zero order consistent SPH approximation for the diver-

gence operator48 is,

⟨∇ ·u⟩i = ∑
j

(u j −ui) ·∇Wi jω j. (B2)

We refer to the approximation given in eq. (B2) as div. We

apply the Bonet correction as done in the case of gradient ap-

proximation for a first-order consistent approximation. We

refer to the corrected form as div_bc.

8 In this paper, we report order of convergence by fitting a linear regression

line and finding its slope.
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FIG. 21. The rate of convergence UP (left) and PP(right) domains for velocity divergence in eq. (B2). The dashed line shows the SOC rate.

The suffix _bc represents the corresponding form with Bonet correction.

We consider the velocity field, u= sin(π(x+y))(î+ ĵ). The

divergence of the velocity is given by, ∇ · u = 2π cos(π(x+
y)). We evaluate the L1 error in the approximation using

eq. (A2). In fig. 21, we plot the L1 error in the divergence

approximation in an UP and PP domain. The uncorrected ap-

proximation does not display SOC since the discretization er-

ror dominates as we approach higher resolutions. Clearly, the

corrected form shows SOC even in the case of a PP domain.

In order to evaluate the accuracy of the approximation in a

divergence-free field, we consider the velocity field,

u =−cos(2πx)sin(2πy),

v = sin(2πx)cos(2πy).
(B3)

In the fig. 22, we plot the L1 error using eq. (A2) in the di-

vergence computation as a function of resolution for the UP

and PP domain. Clearly, the divergence is zero in a UP do-

main owing to the symmetry of the particles. However, the

error in PP domain remains about the same order as seen in

the case of general field in fig. 21 9. Clearly, the Bonet correc-

tion does not correct this issue. We observe the implication of

this behavior when we compare the schemes in section III C.

The continuity equation corresponds to the mass conserva-

tion of the system, since mass of each particle is kept constant,

we satisfy the global conservation of mass implicitly.

3. Comparison of ∇2u approximation

In this section, we compare various approximations for the

Laplacian operator listed in table VIII. We refer to the sym-

9 See error in divergence approximation in section II C

Name Expression Used in

Cleary 2(ui −u j)
∇Wi j ·xi j

|xi j |2
ω j WCSPH26,30

Fatehi 2ω j

(

(ui−u j)
|xi j |

−
xi j ·(∇u)i

|xi j |

)

∇Wi j ·xi j

|xi j |
modified WCSPH27

tvf 1
mi

(

ω2
i +ω2

j

)

(ui −u j)
∇Wi j ·xi j

|xi j |2
TVF13, EDAC37

coupled ((∇u) j − (∇u)i) ·∇Wi jω j Bonet and Lok 9

TABLE VIII. The various approximations of ∇2u. The column “ex-

pression” is assumed to be summed over the index j over all the

neighbor particles inside the kernel support. The ∇ui term are calcu-

lated using first-order consistent formulation i.e. asym_bc

metric formulations of 24 and 26 as Cleary, and those of

13 as tvf. These ensure that linear momentum is conserved.

We also consider the coupled formulation used by 9 and 28

and refer to these as coupled. This formulation shows os-

cillations in the approximation when the initial condition is

discontinuous. However, to remedy this, one can perform a

first-order accurate approximation near the discontinuity and

then perform this approximation as shown in 29. We consider

the improved formulation proposed by Fatehi and Manzari 27

referred as Fatehi. Both the coupled and Fatehi formu-

lations are asymmetric. These formulations are performed

in two steps where the first step involves computation of ve-

locity gradient for each particle. We also consider the kernel

correction applied to each of these formulations. In the case

of Cleary, tvf, and coupled methods, we use the standard

Bonet and Liu corrections. However, in the case of Fatehi,

we use the correction tensor proposed by Fatehi and Man-
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FIG. 22. The rate of convergence UP (left) and PP(right) domains for velocity divergence for a divergence-free field. The dashed line shows

the SOC rate. The suffix _bc represents the corresponding form with Bonet correction.

FIG. 23. The rate of convergence UP (left) and PP(right) domains for various approximations of the Laplacian operator in table VIII. The

dashed line shows the SOC rate. The suffixes _bc and _lc represent the corresponding form with the Bonet correction and Liu correction,

respectively. The Fatehi_c refers to the fatehi formulation with the correction proposed by Fatehi and Manzari 27 (See appendix C).

zari 27 given by

B̂
ηµ
i =−

(

∑
j

ω j∂
µWi jx

η
i j+

∑
j

ω jr
2
i j∂

θWi jB
T,θα
i ∑

j

ω je
α
i je

η
i j∂

µWi j

)−1

,

(B4)

where the subscripts are SPH summation indices and super-

scripts are in tensor notation 10. We refer to this corrected

formulation as Fatehi_c. Additionally, the second derivative

can also be obtained by taking the double derivative of the

10 The term ∗i j is widely used in SPH literature and so we use tensor indices

in the superscript to derive eq. (B4) in appendix C.
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Name FT

Fmax
Tr L1 error Order

Cleary_bc -1.28e+00 1.95 6.55e-02 -0.83

Cleary_lc -2.15e-01 2.43 4.59e-02 -0.79

Cleary -1.08e-10 1.12 6.54e-02 -0.84

Fatehi_c 1.69e+00 4.10 2.88e-04 1.30

Fatehi 1.30e+00 2.70 8.43e-04 0.68

Korzilius 1.61e+00 4.66 2.49e-04 1.70

coupled_bc 1.61e+00 3.05 2.54e-04 1.95

coupled 1.30e+00 2.59 8.38e-04 1.46

tvf_bc -1.26e+00 2.07 6.80e-02 -0.66

tvf_lc -2.16e-01 2.35 5.01e-02 -0.56

tvf -1.06e-10 1.00 6.77e-02 -0.67

TABLE IX. The ratio FT

Fmax
showing the total force in the system due

to lack of conservation of the approximation and the time taken, Tr

relative to the tvf formulation, and L1 error for 500× 500 particle

case in a PP domain. The last column shows order of convergence

for all the methods listed in first column.

kernel19–21. Therefore, we also consider the method proposed

by Korzilius, Schilders, and Anthonissen 21 that remedies the

deficiencies in earlier approaches where the second derivative

was employed. We obtain the second derivative of a scalar

field using,

∇̃2ui = (Γ̃)−1
(

∑(u j −ui) ˜∇2W i jω j −xi j ⟨∇u⟩i
˜∇2W i jω j

)

(B5)

where ∇̃2 =
[

∂ 2

∂x2 ,
∂ 2

∂x∂y
, ∂ 2

∂y2

]T

is the operator, ˜∇2W i j =
[

∂ 2Wi j

∂x2 ,
∂ 2Wi j

∂x∂y
,

∂ 2Wi j

∂y2

]T

. The gradient ⟨∇u⟩i is approximated us-

ing the asym_bc formulation. The correction Γ̃ is given by

Γ̃i = ∑
1

2
˜∇2W i jζ

T
i j ω j −∑ ˜∇2W i jx

T
jiω jB

−1 ∑
1

2
∇Wi jζ

T
i j ω j

(B6)

where ζi j = [x2
i j,xi jyi j,y

2
i j] and B is the Bonet correction ma-

trix (see (11)). We refer to this formulation as Korzilius.

In the fig. 23, we plot the rate of convergence for the var-

ious formulations discussed above in both UP and PP do-

mains. In the UP domain, all the methods at least show

zeroth-order convergence. All methods without corrections

suffer from high discretization error that dominates at higher

resolutions27. When either Bonet or Liu corrections are em-

ployed, Cleary, coupled, Fatehi_c, and Korzilius meth-

ods show SOC. The coupled method is approximately half an

order less accurate as compared to Cleary and Fatehi. The

accuracy of Korzilius method is in between the coupled
and Fatehi method. The tvf method is very inaccurate as

the discretization error increases due to the introduction of

ω2
i +ω2

j .

It is important to note that in the PP domain, the symmetric

methods diverge due to discretization error of O( d̃
h2

∆s
h
), where

d̃ is the deviation from the regular particle arrangement27.

Only the coupled, Korzilius, and Fatehi methods show

a positive convergence rate. On applying the corresponding

correction, the coupled, Korzilius, and Fatehi methods

improve. The accuracy for coupled, Korzilius, Fatehi is

maintained as observed in the case of UP domain.

In the table IX, we tabulate the total force as a result of the

approximation, the time taken for the approximation, and the

error on a PP domain consisting of 500× 500 particles with

the order of convergence in the last column for each method

plotted in fig. 23. We observe a similar increase in computa-

tional time due to the Bonet and Liu corrections as seen in the

case of gradient approximation. The coupled, Korzilius,

and Fatehi formulation have even higher computational cost

due to the additional step of velocity gradient computation.

The Korzilius method requires additional time since the

double derivative of the kernel is involved. The Fatehi_c
method has an additional step where we compute the second-

order tensor in eq. (B4) for each particle resulting in a fur-

ther increase in computation time. We observe a similar in-

crease in total force when an asymmetric version of the for-

mulation is employed, as seen in the case of gradient approxi-

mation. Clearly, both the coupled, Korzilius, and Fatehi
formulation results in an equal amount of total force result-

ing in a lack of conservation of linear momentum. In order to

get a SOC approximation, we can use either of coupled_bc,

Korzilius, or Fatehi_c formulations for viscous force es-

timation.

Appendix C: The Cleary and Fatehi corrections

In this section, we introduce the tensor notations for SPH

that makes the comprehension better. We use derivation for

the error estimation from Fatehi and Manzari 27 . We write the

Taylor series expansion of the velocity component, u j defined

at a point, x j about a point xi as, expansion given by

u j = ui − (xi j ·∇)ui +
1

2
(xi j ·∇)2ui −

1

6
(xi j ·∇)3ui + H.O.T

(C1)

where, xi j = xi − x j. Without loss of generality, we consider

only one component of velocity. We use tensor notation to

represent vector xi j as xα
i j, where i and j are the particle in-

dices. We follow this notation since SPH approximation is

performed using sum over all its neighbors j. Thus, we write

the eq. (C1) in this tensor notation as

u j =ui − xα
i j∂

α ui +
1

2
x

β
i jx

γ
i j∂

β ∂ γ ui−

1

6
xα

i jx
β
i jx

γ
i j∂

α ∂ β ∂ γ ui +H.O.T.

(C2)

We note that the subscripts are SPH notations and the super-

scripts are tensor notation indices.

We write the Laplacian of velocity, u using proposed by 26

as

⟨∂ η ∂ η u⟩i = ∑
j

2ω j(ui −u j)
∂ ηWi jx

η
i j

r2
i j

(C3)

where ⟨∗⟩ is used to denote the approximation. We write the

error, Ei in the approximation as

Ei = ∂ η ∂ η ui −⟨∂ η ∂ η u⟩i (C4)
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Using eq. (C2) and eq. (C3), we obtain the error,

Ei = ∂ θ ∂ θ ui −∑
j

2ω j

[

xα
i j∂

α ui −
1

2
x

β
i jx

γ
i j∂

β ∂ γ ui+

1

6
xδ

i jx
ε
i jx

ζ
i j∂

δ ∂ ε ∂ ζ ui +H.O.T
]∂ ηWi jx

η
i j

r2
i j

.

(C5)

In the above equation, we can write ∂ θ ∂ θ ui = δ θι ∂ θ ∂ ι ui and

multiplying each term inside, we get,

Ei =−∂ α ui ∑
j

2ω je
α
i je

η
i j∂

ηWi j+

(

δ βγ +∑
j

ω jx
β
i jx

γ
i j

∂ ηWi jx
η
i j

r2
i j

)

∂ β ∂ γ ui +H.O.T

(C6)

We can see that the first term is leading error term in the

above equation. For a smoothing kernel, W the term,

∑
j

ω j(xi j ⊗xi j)∇Wi j (C7)

is the second moment of the kernel gradient. In a UP domain,

the second moment is zero. However, the leading term of the

error is second moment scaled by 1
|xi j |2

which is still zero since

it is a constant in a UP domain. Whereas, the leading term is

non-zero and causes the approximation to deviate.

In the modified formulation proposed by Fatehi and Man-

zari 27 , the leading term is included in the approximation. We

write the modified form as

〈

∂ θ ∂ θ ui

〉

i
= ∑

j

2ω j((ui −u j)− xα
i j ⟨∂

α u⟩i)
∂ ηWi jx

η
i j

r2
i j

(C8)

Using the similar algebraic manipulation, we write the error

term as

Ei =

(

∑
j

ω jx
β
i jx

γ
i j∂

θWi jB
T,θα
i ∑

j

ω je
α
i je

η
i j∂

ηWi j+

δ βγ +∑
j

ω jx
β
i jx

γ
i j

∂ ηWi jx
η
i j

r2
i j

)

∂ β ∂ γ ui +H.O.T

(C9)

where BT
i =

(

∑ j ∇Wi j ⊗ (x j −xi)
)−T

is the correction matrix.

Fatehi and Manzari 27 also proposed a correction for the ker-

nel gradient. Let us assume the correction B̂
ηµ
i is applied to

the kernel gradient. We write the modified equation as

〈

∂ θ ∂ θ ui

〉

i
= ∑

j

2ω j((ui −u j)− xα
i j ⟨∂

α u⟩i)
B̂

ηµ
i ∂ µWi jx

η
i j

r2
i j

(C10)

The Error in the above equation is given by

Ei =

(

∑
j

ω jx
β
i jx

γ
i j∂

θWi jB
T,θα
i ∑

j

ω je
α
i je

η
i jB̂

ηµ
i ∂ µWi j+

δ βγ +∑
j

ω jx
β
i jx

γ
i j

B̂
ηµ
i ∂ µWi jx

η
i j

r2
i j

)

∂ β ∂ γ ui +H.O.T

(C11)

In order to make the approximation second order accurate, we

must have the coefficient of ∂ β ∂ γ ui equal to zero. Thus we

get,

∑
j

ω jx
β
i jx

γ
i j∂

θWi jB
T,θα
i ∑

j

ω je
α
i je

η
i jB̂

ηµ
i ∂ µWi j+

∑
j

ω je
β
i je

γ
i jB̂

ηµ
i ∂ µWi jx

η
i j =−δ βγ

(C12)

On inverting the system, we obtain,

B̂
ηµ
i =−

(

∑
j

ω j∂
µWi jx

η
i j+

∑
j

ω jr
2
i j∂

θWi jB
T,θα
i ∑

j

ω je
α
i je

η
i j∂

µWi j

)−1
(C13)

The above equation is the correction matrix proposed by 27 in

a simple tensorial notation.

Appendix D: The effect of solid-wall boundary conditions

There are many solid-wall boundary condition implemen-

tations in SPH35,50,62,63. In this paper, we use the method due

to Maciá et al. 62 and Adami, Hu, and Adams 63 that is widely

used in SPH. In order to apply the boundary condition, a few

layers of ghost particles are created outside the fluid domain

such that the fluid particles near the boundary have full sup-

port. The pressure and velocity on the ghost particles are ex-

trapolated from the fluid particles. The pressure is determined

using

pg =
∑ f p fWg f

∑ f Wg f

, (D1)

where p f is the pressure of the fluid particles, Wg f is the kernel

weight between the ghost and fluid particle, and the sum is

taken over all the fluid particles near the ghost particle. The

velocity on the ghost particle is extrapolated using

ug = 2us −
∑ f u fWg f

∑ f Wg f

, (D2)

where us is the actual velocity of the solid, and u f is the ve-

locity of the fluid particles. In the L-IPST-C scheme, we use

a slip boundary for the continuity equation67. Additionally,

since the coupled formulation is prone to oscillations due to

discontinuity4 we smooth-out oscillations from the three fluid

particle layers adjacent to the wall by setting velocity values

using a first order consistent interpolation.

We consider the Poiseuille flow problem. The exact solu-

tion of the Poiseuille flow is given by

u(y) = 0.5
F

ν
y(L− y) (D3)

where F = 0.8N is the constant force applied on the flow, ν =
0.1m2/s is the dynamic viscosity of the flow, L = 1m is the
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distance between the parallel plates, and y is the distance from

the bottom plate. We consider a domain of size 0.4× 1m2

with maximum flow velocity U = 1m/s and Re = 10. The

domain is periodic in x-direction. We simulate the problem

for 10s for each scheme for 50×50, 100×100, and 200×200

resolutions.

FIG. 24. The convergence of error in the x-component of the velocity

for Poiseuille flow problem.

In fig. 24, we plot the L1 error in the x-component of the ve-

locity for all the schemes. Clearly, none of the schemes show

O(h2) convergence. The L-IPST-C scheme shows a higher

value of error due to the smoothing used for the near wall

fluid particles. It is clear from the above experiment that we

require a convergent boundary condition implementation such

that it does not dominate the error in the solution.

Appendix E: δ+SPH formulation correction

The evolution equation of the δ+SPH equation has the form

D f

Dt
=

d f

dt
+∇ f ·δu, (E1)

where
D f
Dt

= ∂ f

∂ t
+(u+ δu) ·∇ f . The above equation can be

written in terms of a particle i as,

D fi

Dt
=

d fi

dt
+∇ fi ·δui. (E2)

We can use the vector identity for the last term,

∇ f ·δu = ∇ · ( f δu)− f ∇ · (δu). (E3)

On performing SPH approximation, we obtain

∇ fi ·δui = ∑
j

( f jδu j − fiδui) ·∇Wi jω j−

∑
j

fi(δuj −δui) ·∇Wi jω j

= ∑
j

( f j − fi)δu j ·∇Wi jω j.

(E4)

Clearly, we cannot recover the LHS should we use the above

discretization. However, on using f j in place of fi in the sec-

ond term, we get

∇ fi ·δui = ∑
j

( f jδu j − fiδui) ·∇Wi jω j−

∑
j

f j(δuj −δui) ·∇Wi jω j.

= ∑
j

( f j − fi)δui ·∇Wi jω j.

(E5)

Thus, in the δ+SPH we should use the above discretization.

Appendix F: Schemes with issues solving the Gresho-Chan
vortex

FIG. 25. The velocity of particles with the distance from the center of

the vortex (left) and the x-component of the total linear momentum

(right) for the Gresho-Chan vortex problem.

In this section, we show the results for the scheme for which

the Gresho-Chan vortex problem failed to complete. In fig. 25,

we plot the velocity of the particles with the distance, r from

the center at t = 1.5s, and the linear momentum in the x-

direction with time for a 100×100 simulation. Clearly, all the

schemes considered show better approximate conservation of
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linear momentum compared to other scheme; however, they

fail to complete.

In case of L-RR-C, due to the present of sharp change in the

velocity field, the remeshing procedure diverges39. In case of

E-C, TV-C and EWCSPH, we suspect that the advection term

u ·∇u (or δu ·∇u in case of TV-C) diverge in the absence of

viscosity. This opens possible avenues of research to obtain a

better discretization of the advection term.
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