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The Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) method is a Lagrangian method that is typi-
cally used for the simulation of incompressible fluids. While developing an SPH-based scheme or solver, researchers
often verify their code with exact solutions, solutions from other numerical techniques, or experimental data. This
typically requires a significant amount of computational effort and does not test the full capabilities of the solver. Fur-
thermore, often this does not yield insights on the convergence of the solver. In this paper we introduce the method of
manufactured solutions (MMS) to comprehensively test a WCSPH-based solver in a robust and efficient manner. The
MMS is well established in the context of mesh-based numerical solvers. We show how the method can be applied in
the context of Lagrangian WCSPH solvers to test the convergence and accuracy of the solver in two and three dimen-
sions, systematically identify any problems with the solver, and test the boundary conditions in an efficient way. We
demonstrate this for both a traditional WCSPH scheme as well as for some recently proposed second order convergent
WCSPH schemes. Our code is open source and the results of the manuscript are reproducible.

I. INTRODUCTION 54

55

It has been more than four decades since the Smoothed Par- **
ticle Hydrodynamics (SPH) was first introduced'?. SPH is*
a meshless method and is typically implemented using La-ss
grangian particles. The method has been applied to a wide se
variety of problems>~. However, convergence of the SPH eo
schemes is still considered a grand challenge problem today®. s
This is in part because of the Lagrangian nature of the scheme. e
In this paper we introduce a powerful, systematic methodol- e
ogy called the method of manufactured solutions’ to study the es
accuracy and convergence of the SPH method. s

The method of manufactured solutions’ is a well estab-ss
lished method employed in the finite volume®'* and finite ele- &7
ment!! method communities to verify the accuracy of solvers. e
An important part of this involves the verification of order e
of convergence guarantees provided by the solver. Roache” 70
and thereafter Salari and Knupp !> formally introduced the 7
idea of verification and validation in the context of compu- 72
tational solvers for PDEs. Verification is a mathematical ex- 72
ercise wherein we assess if the implementation of a numeri- 74
cal method is consistent with the chosen governing equations. 7
For example, verification will allow us to check whether the 7¢
numerical implementation of a second-order accurate method 77
is indeed second-order. On the other hand, validation tests ,q
whether the chosen governing equations suitably model the ,,
given physics. This is often established by comparison with ¢,
the results of experiments. o1

According to Roy '3, verification can be classified into two sz
categories namely, code verification, and solution verifica- es
tion. In code verification, the code is tested for its correctness, sa
whereas in solution verification, we quantify the errors in the es
solution obtained from a simulation. For example, in solution ss
verification we solve a specific problem and estimate the er- e
ror through some means like a grid convergence study. Salari ss

and Knupp 2 proposed different methods for code verification
viz. trend test, symmetry test, comparison test, method of ex-
act solution (MES), and the method of manufactured solutions
(MMS).

In the context of SPH, the comparison test and the method
of exact solution are used widely to verify new schemes. In
the comparison test, a solution obtained from an experiment
or a well-established solver is compared with the solution ob-
tained from the solver being tested. Many authors'*!7 use
the computational results for the lid-driven cavity and flow
past a cylinder problems to demonstrate the accuracy of their
respective solvers. On the other hand, some authors!8-20 uge
solutions from established solvers to study the accuracy. In
the MES, the exact solution of the governing equations is
used to compare the accuracy as well as the order of con-
vergence of the solver. For example, some authors'®!32!
use the Taylor-Green vortex problem whereas others?>?3 use
the Gresho-Chan vortex problem. We note that none of
these studies have demonstrated formal second-order conver-
gence for the Lagrangian Weakly-Compressible SPH (WC-
SPH) scheme. Recently, Negi and Ramachandran?* propose
a family of second-order convergent WCSPH schemes and
employ the Taylor-Green problem to demonstrate the conver-
gence.

Despite their extensive use, the comparison and MES tests
have several shortcomings'2. The comparison test often re-
quires a significant amount of computation since a full simu-
lation for some complex problem is usually undertaken requir-
ing a reasonable resolution and a large number of timesteps to
attain an appropriate solution. In the case of the MES, there
are very few exact solutions that exercise the full capabili-
ties of the solver. For example the Taylor-Green and Gresho-
Chan vortex problems are usually simulated without any solid
boundaries and are only available in two-dimensions. The
problems are also fairly simple and are for incompressible
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fluids and this imposes additional constraints on WCSPHias
schemes which are not truly incompressible. For examplejsa
Negi and Ramachandran?* show that the error of the WC-as
SPH scheme is O(M?), where M is the Mach number of theus
flow, due to the artificial compressibility assumption. Thusaez
the verification process requires that the WCSPH solver beiss
executed with significantly larger sound speeds than normallyiee
employed further increasing the execution time. Moreoverzso
these methods cannot ensure that all the aspects of the solvens:
are tested for example, it is difficult to find the order of conasz
vergence of the boundary condition implementation. 153

The method of manufactured solutions does not suffenss
from these shortcomings and is considered a state-of-the-artss
method for the verification of computational codes. However;se
this method has to our knowledge not been used in the contextsz
of the SPH thus far. In the MMS, a solution u = ¢ (x,y,z, hss
is manufactured such that it is sufficiently complex and satis-se
fies some desirable properties'2. We discuss these propertiesieo
in detail in a later section (see section IV). Let the governinge:
equation be given by 162

Fu=g, (€]

where .7 is the differential operator, u is the variable and g 1;:
the source term. We subject the Manufactured Solution (MS),
u=¢(x,y,z,1) to the governing differential equation in eq. (1),
Since ¢ may not be the solution of the governing equation, we,

167
obtain a residual, 168

169

r=F¢-g. @)
170
‘We add the residual r as a source term to the governing equa+*™
tion therefore, the modified equation is given by 72
173
Fu=g+r. (Bhra

175
We then solve the problem along with this additional source,,,
term added to the solver. If the solver is correct we should,,
obtain the MS, u, as the solution. We add the source term to,,,
each particle directly and this does not change the solver in,_,
any other way. The convergence of the solver may be com-,,
puted numerically by solving the problem at different resolu-,,,
tions and finding the error in the solution. 182
The MMS is therefore an elegant yet simple technique to,,
test the accuracy of a solver without making changes to the,,
solver or the scheme. The only requirement is that it be pos-,,
sible to add an arbitrary source term to a particular equation.
It is easy to see that the method can be applied in arbitrary
dimensions. Further, we may use this technique to also testss
boundary conditions. By employing a carefully chosen MSier
one may use the method to identify specific problems withies
certain discretizations. For example, one may choose an in-ee
viscid solution to test only the pressure gradient term in thewso
momentum equation. This makes it easy to discover issues ino:
the implementation. 102
In Feng et al.? the authors use an MMS to verify theires
SPH implementation. However, the particles do not moveies
and therefore it is no different than a traditional applicationes
of MMS in mesh-based methods. As mentioned earlier, theios
MMS has not to our knowledge been applied in the context ofier

the Lagrangian SPH method in order to study its accuracy.
It is not entirely clear why this is the case but we conjec-
ture that this is because the SPH method is Lagrangian and
the traditional MMS has been applied in the case of tradi-
tional finite volume and finite element methods. When the
particles move, it becomes difficult to satisfy the boundary
conditions and have the particles moving in an arbitrary fash-
ion. However, these issues can be handled in the context of
an SPH scheme since it is possible to add and remove par-
ticles into a simulation. The lack of second order conver-
gent SPH schemes is also a possible reason for the lack of
adoption of the MMS in the SPH community. In the present
work we use the recently proposed second-order convergent
Lagrangian SPH schemes® to demonstrate the method. We
observe that in the present work, all the schemes we consider
employ some form of particle shifting'>!7-20-27_ This is crucial
since the particles can then be constrained inside a solid do-
main and even if the particles move, their motion is corrected
by the particle shifting algorithm. We thus do not need to add
or remove particles from any of our simulations.

Our major contribution in this work is to show how one
can apply the MMS to carefully study the accuracy of a mod-
ern WCSPH implementation. We first obtain a suitable initial
particle configuration to be used in the simulation. We then
systematically show the method to construct a MS for estab-
lished WCSPH schemes as well as the second-order schemes
proposed by Negi and Ramachandran?*. We show how this
can be applied to any specified shape of the domain. We show
how to apply the MMS in the context of both Eulerian and La-
grangian SPH schemes. We then demonstrate how the MMS
can be useful to debug a solver by deliberately changing one
of the equations in the second-order convergent scheme and
show the MS construction such that the change is highlighted
in the order of convergence plot. We then study the con-
vergence of some commonly used implementations for the
Dirichlet and Neumann boundary conditions for solids. We
demonstrate that the method can be used to study convergence
for extreme resolutions as well as for three dimensional cases.
The proposed method is very fast as we do not require a large
number of iterations to verify the convergence. It is impor-
tant to note that while we focus on verification, a validation
study must be performed to ensure that the physics is accu-
rately captured by the solver.

In summary, we present a simple, efficient, and power-
ful method to study convergence, and perform code verifica-
tion of a WCSPH solver. This is very important given that
the convergence of SPH schemes is still considered a grand-
challenge problem®. We make our code available as open
source (https://gitlab.com/pypr/mms_sph) and all the
results shown in our work are fully automated in the interest
of reproducibility. In the next section we briefly discuss the
SPH method followed by the verification techniques used in
SPH. Thereafter we discuss the MMS method and how it can
be applied in the context of the WCSPH scheme. We then
apply the method to a variety of problems.
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Il.  THE SPH METHOD 240

In the present work, we discretize the domain Q into
equally spaced points having mass m and volume ®. We may, A
approximate a function f at a point X; in the domain Q by,

(f(x)) = L f(x))Wij@;, Q)
J

where W;; = W(x; —x;,h), where W is the smoothing kernekas
and h is its support radius, w; =m;/pj, pj = ¥ ;m;Wij and m;
is the mass of the particle. The sum j is over all the neighbo+s
particles of the particle i. p; is commonly called the summa-
tion density in the SPH literature. The eq. (4) is O(h?) accus,,
rate in a uniform domain with kernel having full support?®2° var
In order to obtain the gradient of the function f at x; using the,,,
kernel having full support, one may use
249
(VF(x)) = Y (F(x) — S () VW, )
! 251
where VW, j = BiVW;;, where B; is the Bonet-Lok correctior’®
matrix*® and where VW;; is the gradient of W;; w.rt. x;. In—
a similar manner, many authors'>2°32 propose various dis-
cretizations of the gradient, divergence, and Laplacian of a
function; these various forms are summarized and compared
in 24.
The SPH method can be used to solve the Weakly-ss
Compressible SPH equation given by

d

a0 =—9oV-u,

dt ©)
dt 0 ’ 256

257
where g, u, and p are the density, velocity, and pressure of the,ss
flow, respectively, and Vv is the dynamic viscosity of the fluid,se
‘We note here that p is different from the summation density p .eo
We use p; to estimate the particle volume, @;. The governings,
equations in eq. (6) are completed by linking the pressure ps.
to density p using an equation of state. There are many differ-es
ent schemes'#102133 that solve eq. (6). However, they all fail
to show second-order convergence. Recently, Negi and Ra=%
machandran 2* performed a convergence study of various dis-2ss
cretization operators, and propose a family of second-ordeee
convergent schemes. In this paper, we use these schemes tc?”
demonstrate the new method to study convergence of SPHee®
schemes and compare it with the Entropically damped arti-
ficial compressibility (EDAC) scheme'*. We summarize theses
schemes considered in this study as follows:

270

1. L-IPST-C (Lagrangian-Iterative PST-Coupled scheme)z7,
which is a second order scheme proposed in 24, where
we discretize the continuity equation as,

in - 272
o Z(Uj*lli)'VWijwj- ()

J

We discretize the momentum equation as,

du; (Pj—pi) ¢
=y VW o
ar Z o i@+

J _ (8)
v (Vu),; — (Vu)) - Ty
J

where VW,- j = B;VW;;, where B; is the correction ma-
trix*°, and the (Vu); is the first order consistent gradient
approximation given by

(Vu); = Y (wj —u)) © VW 00;. ©
J
In order to complete the system, we use a linear equa-

tion of state (EOS) where we link pressure with the fluid
density o given by

pi = c2(0i — 00)s (10)

where ¢, is the artificial speed of sound and g, is the ref-
erence density. We use the standard Runge-Kutta sec-
ond order integrator for time stepping. The time step At
is set using the stability condition given by

Atrﬂ =0.25

co+U ’
h2
Atyiscous :025*,
Y an
h
Atf()r(‘f =0.25,/ —

lgl’

At :min(AtcﬂaAtviscouxyAtfarce)v
where U is the maximum velocity in the domain, g is
the magnitude of the acceleration due to gravity. For
all over testcase, we set ¢, = 20m/s irrespective of the
maximum velocity in the domain. After every ten time
step, particle shifting is applied using iterative particle
shifting technique (IPST) to redistribute the particle in
order to obtain a uniform distribution. We perform first
order Taylor-series correction for velocity, and density
after shifting.

. PE-IPST-C (Pressure Evolution-Iterative PST-Coupled

scheme): This method is a variation of the L-IPST-C
scheme where a pressure evolution equation is used in-
stead of a continuity equation®*. The pressure evolution
equation is given by

d

=0Vt VawVp. (12)
where V,gq,c = 0thc,/8 with o = 0.5. The SPH dis-
cretization of eq. (12) is given by

d -

171; == oicoy (uj—w) - VW;;0;+
J ~ (13)

Vedacz(<vp>j - <V[7>,-) 'VVVi.fa)ﬁ

J
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where (Vp), is evaluated using second-order consistentaa
approximation. Since the pressure is linked with den-
sity, we evaluate the density by inverting the linear EOS
given by 315
o="2+0,. (14)
CO
316
3. TV-C (Transport Velocity-Coupled): In this method, we
start with the Arbitrary Eulerian Lagrangian SPH equa-sis

tion'®3 given by 318
- 319
7f = oV-(utdu)+V-(odu),
i 15)
v
7? P yV2u 4 V- (u@ Su) — uV(Su),
4

321
where ;,) = 952 + (u+6u)-V(-) and du is the shifting,,
velocity computed using 323

W 324
du=—M(2h)c, ), [1 +R <W<AS)) ] VWjw;, (16}

J 326

where R = 0.24, and n = 4%, We note that the dens1ty
o1is treated as a fluid property independent of pa.rtlcle o
positions>*. The main idea is to redistribute the partlcles
using a shifting force in the governing equations mstead330
of performing shifting post step. All the terms in the .
eq. (15) are discretized using a second-order accurate N
formulation as done in case of the L-IPST-C bcheme N
(for details refer to 24).

335

4. E-C : This is an Eulerian method proposed by Neg1
and Ramachandran 2. The governing equations for the N

scheme is given by
338

d

—g:ng~ufu~Vg, >
v ame
—:**p+VVZU7u-Vu. 341
ot 0 342

A similar method was proposed by Nasar ef al. 3. How-"*
ever, unlike the E-C method they evaluate the density™*
as a function of particle distribution. This assumption,,,
allowed them to set the last term in the continuity equas,,,
tion equal to zero. This results in an increased error in,,,
the pressure as shown in 24. All the terms in the gov-,,
erning equations in the eq. (17) are discretized using a,,,
second order accurate formulation as done in case of

L-IPST-C scheme. 350

351

5. EDAC: In this method, proposed by Ramachandran,,
and Puri '4, we employ the pressure evolution equation;,_,
however, den51ty is evaluated using summation density,,,
formulation (9= p in eq. (12)). Unlike the other meth-,
ods considered above, this is not a second order accu-
rate method. The discretization of the pressure evolu-=se
tion in eq. (12) is given by 357

358

7Uj)-VVViJ'. (185

360

d/’z m/Pz
R

The momentum equation is discretized as

du,- 1 2 2 (ll )
T VY (VEVe VW; VW;; -
dr m; ;( i + j) plj 1/+Tlu 2 nh ij Yij
19)
where p;; = % and 7;; = n+n ——L where 1; = p;Vi.

In the next section, we consider the standard approach em-
ployed in most SPH literature where a code verification is per-
formed to verify the SPH method.

11l.  CODE VERIFICATION IN SPH

Verification and validation of a numerical method are
equally important. Verification of the accuracy and conver-
gence of a solver is found using exact solutions, solutions
from existing solvers, experimental results, or manufactured
solutions. The verification can also be used to identify bugs
in the solver. On the other hand, validation ensures that the
governing equations are appropriate for the physics and often
involves comparison with experimental results.

Verification is of two kinds: (i) code verification, where we
test the code of the numerical solver for correctness and accu-
racy, and (ii) solution verification, where we quantify the error
in a solution obtained. In this paper, we focus on the code ver-
ification techniques applied to SPH. The different techniques
for code verification'?

e Trend test: Where we use an expert judgment to ver-
ify the solution obtained. For example, the velocity of
the vortex in a viscous periodic domain should diminish
with time. If the solver shows an increase of the veloc-
ity in the domain, then there is an error in the solver.

Symmetry test: Where we ensure that the solution ob-
tained does not change if the domain is rotated or trans-
lated. For example, if we implement an inlet assuming
the flow in the x direction, we will get an erroneous re-
sult on rotating the domain by 90 degree.

Comparison test: Where we compare the solution ob-
tained from the solver with the solutions from an estab-
lished solver or experiment. This method has been used
widely by many authors in the SPH community '+~ to
show the correctness of their respective works.

Method of exact solution (MES): Where we solve a
problem for which the exact solution is known. For ex-
amples, in 24 this method is applied to the Taylor-Green
problem for which an exact solution is known. Some
authors?*3¢ use exact solution for 1D and 2D conduc-
tion problems to demonstrate convergence.

In the context of SPH, out of the above mentioned methods
comparison test and MES are employed widely. We compare
solutions for the Taylor-Green and lid-driven cavity problems
which are the examples of MES and comparison test, respec-
tively.



AlP

Publishing

361

How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 5

The Taylor-Green problem has an exact solution given by

u=—Ue” cos(27x) sin(2my),
v=Ue" sin(27x) cos(27y), (20)
p = —0.25U%¢*" (cos(47x) + cos(4Ty)),

where b = —87%/Re, where Re is the Reynolds number of
the flow. We consider Re = 100 and U = 1m/s. We solve this
problem for three different resolutions viz. 50 x 50, 100 x 100,
and 200 x 200 for a two-dimensional domain of size 1m x 1m
for 2 sec using L-IPST-C scheme. However, we discretize the
pressure gradient using the formulation given by

<@> :Zwﬁwﬁmj 1)
4 J Qi

In fig. 1, we plot the decay in the velocity magnitude with

10° — N=50 303
_ 394
0.9 —— N=100 308
— N=200
396
0.8 ---- Exact
— 0.7
3
0.6
0.5

0.0 0.2 0.4 0.6 0.8 1.0
t

FIG. 1. The decay in velocity magnitude for different resolutions
compared with the exact solution for the Taylor-Green problem.

time for different resolution compared with the exact solution.
Clearly, the decay in the velocity magnitude is very close to
the expected result.

In the lid-driven cavity problem, we consider a two-
dimensional domain of size 1m x 1m with 5 layers of ghoster
particles representing the solid particles. The top wall atg,
y = lm is given a velocity u = lm/s along the x-directionase
We solve the problem using the L-IPST-C scheme for differ-co
ent resolution for 10 sec. However, we discretize the viscouso:
term using the method given by Cleary and Monaghan 37 Trk2
fig. 2, we plot the velocity along the centerline x = 0.5 of theios
domain compared with the result of Ghia, Ghia, and Shin 8 0.
Clearly, the increase in resolution improves the accuracy.  aos

We note that many researchers'4~'? use the above approachucs
to verify their SPH schemes. Unfortunately, in both prob-sor
lems discussed above we used a discretization which is notos
second-order accurate. Evidently, these kind of verificatiomos
techniques are unable to detect such issues. In addition, theno
simulations take a significant amount of time. For examplesi:

1.0

x 0.5

Ghia et al.

0.0
—02 00 02 04 06 08 10
Vx
— N=50
s 007 — n=100
—— N=200
-0.2 o Ghiaetal.
0.0 02 0.4 06 08 1.0
X

FIG. 2. The velocity along x and y direction along the center line
x = 0.5 of the domain for the lid-driven cavity problem

the 200 x 200 resolution lid-driven cavity case took 150 min-
utes. In the case of the Taylor-Green problem since the exact
solution is known one can evaluate the L; error in velocity or
pressure. In fig. 3, we plot the L error in velocity as a function

i
1073 -
-
e —— Error
//
R4 --- 0(hs?)
7’
Y e O(As)
6x1073 102 2x1072
As

FIG. 3. The L, error in velocity for the Taylor-Green problem.

of particle spacing. The L; error is not second-order and di-
verges as we increase resolution from 100 x 100 to 200 x 200.
However, this result does not suggest to us the exact reason
for the error.

In general, one cannot exercise specific terms in the govern-
ing differential equation (GDE) in all the methods described
above. Therefore, the source of error cannot be determined.
For example, the solver may show convergence in the case
of the Gresho-Chan vortex problem but fail for the Taylor-
Green vortex problem due to an issue with the discretization
of the viscous term. It is only recently®® that an analytic solu-
tion for three dimensional Navier-Stokes equations has been
proposed. Other recent work®® has only focused on numeri-
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cal investigation. It is therefore difficult to apply the MES ines7
three dimensions. Furthermore, such studies require an everuss
larger computational effort. Finally, we note that the Taylor-ase
Green vortex problem is for an incompressible fluid making iteo
difficult to test a WCSPH scheme.

Therefore, in the context of SPH, the comparison and MESke1
techniques are insufficient and inefficient. We require a betteme2
method to verify the solver before proceeding to validationses
The method of manufactured solutions offers exactly such a

technique and this is described in the next section. e
465

466

IV. THE METHOD OF MANUFACTURED SOLUTIONS 467

In conventional finite volume and finite element schemes, it*
is mandatory to demonstrate the order of convergence and the®
MMS has been used for this®!14!. For the SPH method, ob-""
taining second-order convergence has itself been a challenge®
until recent]y24. Moreover, to the best of our knowledge thes7:
MMS method has not been applied in the context of SPH. In
this paper, we apply the principles of MMS to formally verity,,,
SPH solvers in a fast and reliable manner. The technique facil,,
itates a careful investigation of the the various discretization,,,
operators, the boundary condition implementation, and time
integrators. 475

In MMS, an artificial or manufactured solution is assumedaze
Let us assume the manufactured solution (MS) for o, u, and p
in eq. (6) are p, @, and p, respectively. Since the MS is not thesr
solution of the eq. (6), we obtain a residue,

478

.
sE:d—f+@V~ﬁ,
180

_dE VP oo @2r
Su = E + ? —vvTu, o1

where s, and s, are the residue term for continuity and mo-,

mentum equation, respectively. Since, we have the closed,,,
form expression for all the terms in the RHS of the eq. (22),,,
we may introduce the residue terms as source terms in the gov-,,
erning equations. We write the modified governing equations

as 486
do a87
Z=—QV~U+SQ, 488
du vp (23)se
5:7?+vvzu+s“. 490

491
Finally, we solve the eq. (23). The addition of the source terms
ensures that the solution is 9, @1, and p. 492
One must take few precautions while employing the**
MMS2:

1. The MS must be C" smooth where 7 is the order of the***
governing equations.

2. It must exercise all the terms i.e., for any evolutiort®®
equation the MS cannot be time-independent. 496
497

3. The MS must be bounded in the domain of interest. For
example, the MS u = ran(x) in the domain [—7, 7] ises
not bounded thus, should not be used. 499

4. The MS should not prevent the successful completion of
the code. For example, if the code assumes the solution
to have positive pressure, then the MS must make sure
that the pressure is not negative.

5. The MS should make sure that the solution satisfies the
basic physics. For example, in a shear layer flow with
discontinuous viscosity, the flux must be continuous.

We note that the MS may not be physically realistic.

We modify the basic steps for MMS proposed by
Oberkampf and Roy *? for use in the context of WCSPH as
follows:

1. Obtain the modified form of the governing equations as
employed in the scheme. For example, in case of the
3-SPH scheme®, the continuity equation used is,

d

£ pvutDViy, @4)
dt

where D = §hc, is the damping used, and J is a numer-
ical parameter. The additional diffusive term in eq. (24)
must be retained while obtaining the source term.

2. Construct the MS using analytical functions. The gen-
eral form of MS is given by

Feyt) = o+ 0 (x,3,1), (25)

where f is any property viz. g, u, or p; @, is a constant,
and ¢ (x,y,t) is a function chosen such that the five pre-
cautions listed above are satisfied.

3. Obtain the source term as done in eq. (22).

4. Add the source term in the solver appropriately. In
SPH, the source term s = s(x,y,z,t), is discretized as
si = s(x;,i,2i,¢) where subscript i denotes the i parti-
cle.

5. Solve the modified equations using the solver for differ-
ent particle spacings/smoothing length (%). The proper-
ties on the boundary particles are updated using the MS.
We note that in the context of WCSPH schemes, one
should not evaluate the derived quantities like gradient
of velocity using the MS on the solid boundary.

6. Evaluate the discretization error for each resolution. We
evaluate the error using

If (xi,2)) = fo(xi,1))]
Li(h)= —At, 26
1(h) Z]’X," N g (26)
where f is the property of interest, N is the total number

of particles and At is the time interval between consec-
utive solution instances.

7. Compute the order of accuracy and determine whether
the desired order is achieved.
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The solver involves discretization of the governing equa-sso
tions and appropriate implementation of the boundary con-ss:
ditions. The MMS can be used to determine the accuracy ofss2
both. However, to obtain the accuracy of boundary conditionssss
the order of convergence of the governing equations should besss
at least as large as that of the boundary conditions'?. Bondss
et al.* and Choudhary ® proposed a method to construct MSsse
for boundary condition verification. In order to obtain a MS
for a boundary surface given as F (x,y,z) = C, we multiply the
original MS with (C — F(x,y,z))™. We write the new MS as ss7

ch(x,y,t) =¢o+ (C - F(X’yv Z))md)(xvyvt)v (27)ss

559

where m is the order of the boundary condition. For example5®®
for the Dirichlet boundary m = 1 and for Neumann boundary?®*
m=2. 562
In the next section, we demonstrate the application of MMS**

to obtain the order of convergence for the schemes listed in®*
section II.

V. RESULTS 569

In this section, we apply the MMS to obtain the order ot: :
convergence of various schemes along with their boundary e
conditions. We first determine the initial particle configura-
tion viz. unperturbed, perturbed, or packed® required for the
MMS. We then demonstrate that one can apply the MMS to
arbitrarily-shaped domains. We then compare the EDAC and
PE-IPST-C schemes which differ in the treatment of the den-
sity. We next apply the MMS to E-C and TV-C schemes as
they employ different governing equations compared to stan-
dard WCSPH in eq. (6). We also demonstrate the application
of the MMS method as a technique to identify mistakes in the
implementation. Finally, we employ the MMS to obtain the
order of convergence of solid wall boundary conditions. We
consider the boundary condition proposed by Macid er al. *¢
for the demonstration.

In all our test cases, we use the quintic spline kernel with
has = h/As = 1.2, where As is the initial inter-particle spac=""
ing. We consider a domain of size 1m x 1m. We simulate all
the test cases for 50 x 50, 100 x 100, 200 x 200, 250 x 250,
400 x 400, 500 x 500, and 1000 x 1000 resolutions to ob-
tain the order of convergence plots. In all our simulationss7e
we initialize the particles properties using the MS. We then
solve eq. (23) and set the properties on any solid particle us-
ing the MS before every timestep. We set a fixed time step
corresponding to the highest resolution for all the other reso+,,
lutions. The appropriate time step is chosen using the criteria,,,
in eq. (11). We evaluate the L; error using eq. (26) in the,,
solution. ss0

The implementation of the code for the source terms (ass:
shown in eq. (22)) due to the MS are automatically gener-ss=
ated using the sympy*’ and mako*® packages. We recommendses
this approach to avoid mistakes during implementation. Salarkes

and Knupp '? used a similar approach to automatically gen-
erate the source term for their solvers. We use the PySPH*
framework for the implementation of the schemes described
in this manuscript. All the figures and plots in this manuscript
are reproducible with a single command through the use of
the automan®® framework. The source code is available at
https://gitlab.com/pypr/mms_sph.

A. The effect of initial particle configuration

The initial particle configuration plays a significant role in
the error estimation since the divergence of the velocity is cap-
tured accurately when the particles are uniformly arranged®*.
In this test case, we consider three different initial configu-
rations of particles, widely used in SPH literature viz. unper-
turbed, perturbed, and packed. The unperturbed configuration
is the one where we place the particles on a Cartesian grid
such that the particles are at a constant distance along the grid
lines. In the perturbed configuration, we perturb the particles
initially placed on a Cartesian grid by adding a uniformly dis-
tributed random displacement as a fraction of the inter-particle
spacing As. For the packed configuration, we use the method
proposed in>*3! to resettle the particles from a randomly per-
turbed distribution to a new configuration such that the num-
ber density of the particles is nearly constant. In fig. 4, we
show all the initial particle distributions with the solid bound-
ary particles in orange.

Perturbed Packed

000 025 050 075 100 000 025 050 075 100 000 025 050 075 100

FIG. 4. The different initial particle arrangements in blue with the
solid boundary in orange.

We consider the MS of the form

—10r

u(x,y,t) =e~ " sin (27x) cos (2my)

~1%in (27y) cos (27x)

(28)

(
v(x,y,t)=—e
p(x,y,1) =1 (cos (47x) + cos (47y))

(

P
o (1) =5+ 0,
Cl)

where, we set ¢, = 20m /s for all our testcases. The MS com-
plies with all the required conditions discussed in section IV.
We note that the MS chosen resembles the exact solution of
the Taylor-Green problem. However, since the solver simu-
lates the NS equation using a weakly compressible formula-
tion, we obtain additional source terms when we substitute the
MS to eq. (6) with v = 0.01m2/s. We obtain the source terms
from the symbolic framework, sympy as,
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—10¢ —10¢

su(x,y,8) =2mue™ " cos (27x) cos (2mwy) — 2mve
0.087%¢~ % sin (27x) cos (27y) —
sv(x,y,1) =2mue™"" sin (27x) sin (27y) — 27ve '

10e~ 1% sin (27y) cos (27x) —

cos (27x) cos (2y) — 0.087%e 1" sin (27y) cos (27x) +

sin (27x) sin (27y) — 10e ™% sin (27x) cos (27y)+
4me= ' sin (47x)

(29)

4me~ 1 sin (47y)

)

o
dnue™'%sin (47x)  dmve”¥sin(4my)  10(cos (47x) +cos (47my)) e~ 1
So(X,y,1) =— 2 - 2 - p .

We add sy = sui+ svj to the momentum equation and s, to
the continuity equation as shown in eq. (23). We solve the
modified WCSPH equations in eq. (23) using the L-IPST-C
method for 100 timesteps where we initialize the domain us-
ing eq. (28). The values of the properties u, p, and o on the
(orange) solid particles are set using eq. (28) at the start of
every time step.

—e— Perturb  —e— Unperturb  —e— Pack  --- 0(as?) - 0las)

Pressure

Velocity

1072

FIG. 5. The error in pressure (left) and velocity (right) with ﬁuidou
particles initialized using the MS in eq. (28) and the source term in
eq. (29) after 10 timesteps for the different configurations.

In fig. 5, we plot the L; error in pressure and velocity af-
ter 10 timesteps as a function of resolution for different initial
particle distributions. Clearly, the difference in initial config-
uration affects the error in pressure by a large amount. How-
ever, in velocity, the error is large in the case of the perturbed
configuration only. The unperturbed configuration has zero
divergence error at r = 02*. Whereas, the perturbed configura-
tion has high error due to the random initialization. Over the
course of a few iterations, there is no significant difference be-
tween the distribution of particles for the unperturbed and the
packed configurations. Therefore, we simulate the problems
for 100 timesteps for a fair comparison.

In fig. 6, we plot the L; error in pressure and velocity after
100 timesteps as a function of resolution for the cases conwia
sidered. Clearly, the difference in error is reduced. Howeversis
the order of convergence is not captured accurately. This ise
because the initial divergence is not captured accurately byeiz
the packed and perturbed configurations. This difference camsis
be avoided through the use of a non-solenoidal velocity fieldsis

—e— Perturb  —e— Unperturb  —e— Pack  --- O(As?)

Velocity

FIG. 6. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (28) and the source term in
eq. (29) after 100 timesteps for all the configurations.

Therefore we consider the following modified MS,

u(x,y,t) =yPe !

v(x,y,t =— e~ sin (27y) cos (27x)

sin (27x) cos (27y)
(30)

p(x,y,1) = (cos (47mx) + cos (41y)) e

—e— Perturb --- olas?)

—e— Unperturb

—e— Pack

Pressure Velocity

102 1073

FIG. 7. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (30) and the corresponding
source terms after 100 timesteps for all the configurations.

We note that the new MS velocity field is not divergence-
free. We obtain the source term with v = 0.01m? /s as done
in eq. (29). We simulate the problem by initializing the do-
main using MS in eq. (30). We also update the solid bound-
ary properties using this MS before every timestep. In fig. 7,
we plot the L; error for pressure and velocity as a function
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of resolution. Clearly, both the packed and unperturbed do-ss
main show second-order convergence. Whereas, the perturbedsaa
configuration fails to show second-order convergence. There-sas
fore, in the context of WCSPH schemes, one should not use aas
divergence-free field in the MS. Furthermore, one should usessz
either a packed or unperturbed configuration for the conver-sss
gence study. 640

It is important to note that in stark contrast the Taylor-Greensso
vortex problem the method shows second-order convergence
irrespective of the value of ¢,. In Negi and Ramachandran *3°%*
a much higher ¢, = 80m/s was necessary in order to demon-*2
strate second-order convergence. Furthermore, the conver***
gence is independent of the initial configuration after 100P**
steps; therefore, we recommend simulating all the testcases®®
for at least 100 timesteps to obtain the true order of conver**®
gence. It is important to note that some discretizations ar¢®*”
second-order accurate when an unperturbed configuration is
used?*. In order to test the robustness of the discretization we
recommend using a packed configuration.

B. The selection of the domain shape .

‘We now show the effect of the shape of the domain on the
convergence of a scheme. We consider a square-shaped and a,
butterfly-shaped domain as shown in fig. 8. 80

Square Butterfly

000 025 050 075 100 00 02 04 06 08 10

665
FIG. 8. The different domain shapes with solid particles in orange
. . . 666
and fluid particles in blue.

—e— square  —e— butterfly --- O(As2) - O(as)

Ly error

-6
10 Pressure Velocity

673
FIG. 9. The L; error in pressure (left) and velocity (right) with in-,
crease in resolution for different shapes of the domain.

674

675

We consider the MS with the non-solenoidal velocity field
in eq. (30) as used in the previous testcase. The source
terms obtained remains same as before, where we consider
v = 0.01m?/s. We solve the modified equations using the
L-IPST-C scheme for 100 time step for each domain. We ini-
tialize the fluid and solid particles using the MS in eq. (30).
We update the properties of the solid particles before every
timestep using the same MS.

In fig. 9, we show the convergence of L; error after 100
timesteps in pressure and velocity as a function of resolution
for both the domain considered. Clearly, both the domains
considered show second-order convergence. Hence, one can
consider any shape of the domain for the convergence study of
WCSPH schemes using MMS. However, we only use square-
shaped domain for all our test cases.

C. Comparison of EDAC and PE-IPST-C

In this testcase, we compare the convergence of EDAC!#
and PE-IPST-C** schemes. These two schemes have two ma-
jor differences. First, the discretizations used in PE-IPST-C
method are all second-order accurate in contrast to the EDAC
scheme. Second, the volume of the fluid given by

Vi= (€29}

is used in the discretization of the term Y2 whereas, in PE-

IPST-C the density o is independent of neighbor particle posi-
tions. We evaluate o using a linear equation of state, eq. (14)

In the EDAC scheme the initial configuration of particles
affects the results. Therefore, we consider an unperturbed
configuration as shown in fig. 4. In order to reduce the com-
plexity, we consider an inviscid MS given by

u(x,y) =sin (27x) cos (27y)
v(x,y) = —sin(2my) cos (27x) (32)
p(x,y) =cos (47x) + cos (47y).

Thus, the solver must maintain the pressure and velocity fields
in the absence of the viscosity. The source term for the EDAC
scheme is given by
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su(x,y) =2mucos (2mx) cos (2mwy) — 2mwvsin (27x) sin (27wy) —

sy(x,y) =2musin (27x) sin (27wy) — 27wy cos (27x) cos (2my) —

47sin (47x)
p

4msin (4my) (33)
p

5p(x,y) = — 1.25h (—167% cos (47x) — 167% cos (47y)) — 4musin (47x) — 4xvsin (47y).

We note that the source term employs density p which is &7e
function of particle position given by 3, where m; is the masssso

su(x,y) =2mucos (27x) cos (2my) — 2mvsin (27x) sin (27y) —

sy(x,y) =2musin (27x) sin (27wy) — 27wy cos (27x) cos (2my) —

of the particle. In the case of the PE-IPST-C scheme, the
source term is given by

4msin (47x)

4rsin (4my) (34)
4

5p(x,y) = — 1.25h (—167% cos (47x) — 167% cos (47y)) — 4musin (47x) — 4xvsin (47y).

We note that the source term s, in eq. (33) and eq. (34) aresss
same. We simulate the problem with the MS in eq. (32). Thess»
(orange) solid boundary properties are reset using this MS be-sss
fore every time step. 689

—e— EDAC  —e— PE-IPSTC  —-- O(bs?) === 0(bs)

Velocity

702
FIG. 10. The error in pressure (left) and velocity (right) with fluid,,,
particles initialized using the MS in eq. (32), and the source term in,
eq. (33) for EDAC and eq. (34) for PE-IPST-C after 1 timestep.

705

—— EDAC  —e— PE-PST-C === OAs?) - olas)

L1 error

Pressure Velocity

FIG. 11. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (32), and the source term in, ,
eq. (33) for EDAC and eq. (34) for PE-IPST-C after 100 timestep.

714

In fig. 10, we plot the L; error in pressure and velocity af-
ter one timestep for both the schemes. Clearly, the EDAC
case diverges in the case of pressure, whereas we observe a
reduced order of convergence in velocity. In contrast, the
PE-IPST-C scheme shows second-order convergence in ve-
locity and higher in case of pressure. We observe this in-
creased order only for the first iteration. In fig. 11, we plot
the L; error in pressure and velocity after 100 timesteps for
both the schemes. In the case of the EDAC scheme, the or-
der of convergence in the velocity does not remains first-order
whereas, the L-IPST-C scheme shows second-order conver-
gence in both pressure and velocity.

We note that, we use an unperturbed mesh therefore we
must obtain second-order convergence to the level of dis-
cretization error for 1 timestep in the case of the EDAC
scheme as well. We observe this behavior since p (a func-
tion of neighbor particle positions) is present in the source
term which comes from the governing differential equation.
Therefore, as mentioned in 24, we should treat p as a separate
property as we do in the case of the PE-IPST-C scheme.

D. Comparison of E-C and TV-C

In this test case, we apply MMS to E-C and TV-C schemes
introduced in section II. The governing equations for E-C
scheme is given in eq. (17) whereas for TV-C in eq. (15). The
expression for the source terms turns out to be same for both
eq. (17) and eq. (15) governing equations given by

d
sg=a—f+gV~u+u'Vg,
(35)
d \%
Su :—qu—pvaZquu-Vu.
at o

These source terms are the same as obtained in the case of the
L-IPST-C scheme as well. In E-C scheme, we fix the grid and
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add the convective term as the correction, whereas in TV-Gio

scheme, we add the shifting velocity in the LHS of the gov-zo

erning equations. 721
In order to show the convergence of the scheme, we con-

sider the inviscid MS in eq. (32) with the linear EOS. We do
not consider the viscous term since the term introduces similar
error in both the schemes. We write the source term as

47sin (4
su(x,y) =2mucos (2mx) cos (2mwy) — 2mvsin (27x) sin (27wy) — M,
0
47sin(4
sy(x,y) =27musin (27x) sin (27wy) — 27wy cos (27x) cos (27y) — M, (36)
0

sg(x,y) = 2 2
i o

where s, = sﬁ—Q—ij is the source term for the momentunyaz
equation in both the schemes. We consider an unperturbed

initial particle distribution and run the simulation for 100Q,,,
timesteps. The particles are initialized with the MS in eq. (32),,,
and solid boundary are reset using the MS before every time,,,
step.

746

—— EC  —e— TV-C =--- Oas?) o o(as)

Pressure Velocity

3
FIG. 12. The error in pressure (left) and velocity (right) with ﬁuid: :4
particles initialized using the MS in eq. (32) and the source term in
eq. (36) after 100 timesteps for the different schemes. e

756

In fig. 12, we plot the L; error in pressure and velocity as
a function of resolution for both the schemes. Since we use
second-order accurate discretization in both the schemes, they
show second-order convergence in both pressure and velocity
as expected. Thus, we see that the modified governing equa-
tions (eq. (15) and eq. (17)) must be considered to obtain the
source term for the schemes.

E. Identification of mistakes in the implementation

In this section, we demonstrate the use of MS as a technique
to identify mistakes in the implementation. We use the Ls7
IPST-C scheme, and introduce either erroneous or lower orderss
discretization for a single term in the governing equations. Werse
then use the proposed MMS to identify the problem. 760

4musin (47x)  4zvsin(47y)

1. Werong divergence estimation

We introduce an error in the discretized form of the con-
tinuity equation used in the L-IPST-C scheme. We refer to
this modified scheme as incorrect CE. We write the incorrect
discretization for the divergence of velocity as

(Vouy =Y (uj+w) - VW0, 37

J

where the error is shown in red. Since only the continuity
equation is involved, we use the inviscid MS given by

u(x,y) = (y — 1) sin (27x) cos (27y)
v(x,y) = — sin (27y) cos (27x) (38)
p(x,y) = (y— 1) (cos (4mx) +cos (47y))

The source terms can be determined by subjecting the above
MS to eq. (6). We simulate the problem for 1 timestep with
a packed domain (see fig. 4). In order to test erroneous or
lower order discretization in the scheme, we recommend the
simulation of only one timestep with a packed initial particle
distribution.

—e— LIPST-C  —e— incorrect CE-RK2  —e— incorrect CE-Euler  -—= O(As?) - olas)

Ly error

Pressure Velocity

FIG. 13. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (32) and the source term
in eq. (36) after 1 timestep for L-IPST-C and the scheme with the
divergence computed using the incorrect eq. (37).

In fig. 13, we plot the L; error in pressure and velocity
as a function of the resolution for the L-IPST-C scheme and
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its variant incorrect CE with two time integrators, Euler and
RK2. Clearly, the error in pressure increases by a significant
amount and the order of convergence is zero for incorrect CE.
However, the error in pressure propagates to velocity in case
of the RK2 integrator. Therefore, we recommend that one use
single stage integrators while using MMS as a technique to
identify mistakes. By looking at incorrect CE-Euler plot in
fig. 13 we can immediately infer that there is an error in either
the continuity equation or the equation of state.

2. Using a symmetric pressure gradient discretization

In this testcase, we use a symmetric formulation as used by
21, 24, and 52 for the pressure gradient term in the L-IPST-
C scheme. We refer to this method as sym. Since only the
pressure gradient is involved, we use the same MS as in the
previous case.

—o— LIPSTC —e— sym --— O(As?) - O(as)

81
Pressure Velocity

FIG. 14. The error in pressure (left) and velocity (right) with fluickes
particles initialized using the MS in eq. (32) and the source term ingg
eq. (36) after 1 timestep for L-IPST-C and the scheme with pressure,,

gradient computed using symmetric formulation.
811

812

In fig. 14, we plot the L; error after 1 timestep in pressures:s
and velocity as a function of resolution for L-IPST-C and syne1a
schemes. Clearly, the order of convergence is affected in thess
velocity only. Therefore, it is evident that a inconsistent pres=sie
sure gradient discretization is used. 817

3. Using inconsistent discrete viscous operator

In this testcase, we use the formulation proposed by Cleary
and Monaghan 37 to approximate the viscous term in the L-
IPST-C scheme. We refer to this method as Cleary. Since
viscosity is involved, we use the MS involving viscous effect
given by eq. (30). While testing the viscous term we use a
high value of v = .25m? /s such that the error due to viscosity
dominates the error in the momentum equation. We simu-
late the problem with a packed configuration of particles for 1
timestep using the MS in eq. (30) and with the corresponding
source terms. We fix the timestep using eq. (11) such that we
satisfy the stability condition.

In fig. 15, we plot the L; error in pressure and velocity as:e
a function of resolution for L-IPST-C and Cleary schemessio

—e— LIPSTC —e— Cleary =--- 0fas?) - o(ns)

Pressure | .~ Velocity

10-2 1072 1072 1072

FIG. 15. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (30) and the corresponding
source term after 1 timestep for L-IPST-C and the scheme with vis-
cous term discretized using formulation given by Cleary and Mon-
aghan 7.

Since the viscous formulation by Cleary and Monaghan 3’
does not converge in the perturbed domain®*, we observe di-
vergence in the velocity. Therefore, we infer that there is an
error in the viscous term.

F. MMS applied to boundary condition

In this section, we use MMS to verify the convergence of
boundary conditions in SPH. In order to do this, the scheme
used must converge at least as fast as the boundary conditions.
Therefore, we consider the second-order convergent L-IPST-
C scheme. We study the Dirichlet boundary conditions for
pressure and velocity, no-slip and slip velocity boundary con-
ditions, and the Neumann pressure boundary condition. We
consider an unperturbed domain as shown in fig. 16, where
we solve the fluid equations using the L-IPST-C scheme for
the blue particles and set the MS before every time step for
the green particles. We set the properties in the orange par-
ticles using the appropriate boundary condition we intend to
test. For example, if we set the pressure Dirichlet boundary
condition in SPH then we set velocity and density using the
MS. In order to obtain rate of convergence, we evaluate Lo,

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 16. Different particle used for testing the boundary condition
with fluid in blue, MS solid boundary in green, and SPH solid bound-
ary in orange.
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error using, 853
Loo(N) = max{|f(x;) = f(Xo),i=1,...,N},  (39),,

where N is the total number of fluid particles for which y >::
0.9, and f(x;) and f(x,) are the computed and exact value of
the property of interest, respectively. We consider only a por-
tion near the boundary since only that region is affected the™
most by the boundary implementation. In the following sec-
tions, we test the different boundary conditions in SPH usingsss

MMS. 8590

1. Dirichlet boundary condition

In this testcase, we construct the MS for boundary condition
as discussed in section IV. In order to set the homogenous**
boundary condition at y = 1, we modify the MS in eq. (32) as

u=(y—1)sin (27x) cos (27y) oot
865
v=—(y—1)sin(2my)cos (27mx) (40,
p=(y—1)(cos(4mx) + cos (4my)) 867
868
Clearly, at y = 1 we have boundary values u =v = p = 0. Insese
SPH, the Dirichlet boundary may be applied by setting the de+o
sired value of the property on the ghost layer shown in orange
in fig. 16. We set homogenous velocity and pressure bound-
ary conditions in two separate testcases and refer to them as
velocity BC and pressure BC, respectively. We set the pres-
sure/velocity on the solid using the MS when we set veloc-
ity/pressure using the SPH method. We simulate the problem
for 100 timesteps with the MS in eq. (40).

—e— pressure BC  —e— velocity BC ~—e— MS  —-= O(As?) - O(As)

Pressure Velocity

FIG. 17. The error in pressure (left) and velocity (right) with fluicze
particles initialized using the MS in eq. (40) 100 timesteps for L7z
IPST-C and velocity BC and pressure BC applied at the orangesss
boundary in fig. 16. a70
880
In fig. 17, we plot the Lo error in pressure and velocity ass:
a function of resolution for L-IPST-C, velocity BC, and pres-ss2
sure BC. Clearly, both the boundary conditions introduce er-
ror in the solution. The error introduced due to Velocity BC
remains around second-order in pressure and first-order in ve-#83
locity. The pressure BC is rarely used in SPH and introduces
a significant amount of error with almost zero order conver-sss
gence. 885

2. Slip boundary condition

In the SPH method, the slip boundary condition can be ap-
plied using the method proposed by Maci4 et al. *°. First, we
extrapolate the velocity of the fluid to the solid using

YuWr
U= =0
ZjWyj

where u and uy denotes the velocity of wall and fluid par-
ticles, respectively. Then, we reverse the component of the
velocity normal to the wall. This method ensures that the di-
vergence of velocity is captured accurately near the slip wall.
Therefore, we consider the inviscid MS given by

(41

u(x,y) = (y — 1)2sin (27x) cos (27y)
v(x,y) = — sin (27y) cos (27x) (42)
p(x,y) = (y— 1) (cos (47x) + cos (47y))

We note that the u velocity is symmetric across y = 1 and v
velocity is asymmetric. We consider the domain as shown in
fig. 16 and apply the free slip boundary condition on the solid
boundary shown in orange color for the L-IPST-C scheme.
We refer to this method as slip BC. We note that the pressure
and density on the solid is set using the MS. We simulate the
problem for 100 timesteps. In fig. 18, we plot the L; error in

—e— SlpBC  —e— MS  --— O(AS?)  ---- O(AS)

L. error

106 Pressure | | Velocity

1072 1072 1072 1072

FIG. 18. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (42) after 100 timesteps for
L-IPST-C and slip BC applied on the orange boundary in fig. 16.

pressure and velocity as a function of resolution for L-IPST-C
and slip BC schemes. Clearly, the application of slip boundary
condition increases the error and the order of convergence is
less than one. In the case of the L-IPST-C scheme, the lower
resolutions show first order convergence but as the resolution
increases approaches second-order. We note that the fig. 18
shows the L., error, however convergence of the L; error is
close to second-order for all resolutions. In summary, the slip
boundary condition as proposed in 46 is accurate in velocity
but reduces the accuracy of the pressure.

3. Pressure boundary condition

In the pressure boundary condition proposed by Macia
et al.*®, we ensure that the pressure gradient normal to the
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boundary is zero. We apply the boundary condition by setting:s

the pressure of the solid boundary particles using 014
915
W,
= m’ 43y
Y iWer 017

where p; and py denotes the pressure of wall and fluid parti-
cles, respectively. For simplicity, we ignore the acceleration
due to gravity and motion of the solid body. We consider the
MS of the form

u(x,y) =y*sin (27x) cos (27y)
v(x,y) = —sin(2my) cos (27x) (44)
p(x,y) = (y—1)* (cos (47x) + cos (47y))

Clearly, the MS satisfies ‘;—f =0 aty= 1. We consider the
domain as shown in fig. 16 and apply the pressure boundary
condition on the solid boundary shown in orange color for L-
IPST-C scheme. We refer to this method as Neumann BC. We
simulate the problem for 100 timesteps.

—e— Neumann BC —e— MS  --- O(as?) e o(as)

pressure | - Velocity

1073 1072 107% 1072

FIG. 19. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (44) after 100 timestepsg23
for L-IPST-C and Neumann BC applied on the orange boundary innn
fig. 16.

930

In fig. 19, we plot the L., error in pressure and velocity foé :

L-IPST-C and Neumann BC. The results show that the pres-
sure boundary condition is second order convergent.

3

934

4. No-slip boundary condition
938

Macid et al. *® proposed the no-slip boundary condition for

SPH where we set the wall velocity as ::

ug = 2u,, — i, (45)9‘1
942

where u,, is velocity of the wall and i is the Shepard inter-+3
polated velocity (see eq. (41)). In the no-slip boundary, wesss
ensure that % =0 at y = 1 therefore, we use the MS for vis®4s

cous flow given by ol
947

u(x,y,1) =(y—1)% e~ sin (27x) cos (27y)
v(x,y1) = — (y— 1)%e % sin (27y) cos (27x) (46):::
p(x,y,1) = (cos (47x) + cos (4my)) e 951

We consider the domain as shown in fig. 16 and apply the
pressure boundary condition on the solid boundary shown
in orange color for the L-IPST-C scheme. We refer to this
method as no-slip BC. We simulate the problem for 100
timesteps with v = 1.0m?/s.

—o— noslipBC —e— MS  --— O(As2) - o(as)

L. error

Pressure Velocity

1073 1072 1073 1072

FIG. 20. The error in pressure (left) and velocity (right) with fluid
particles initialized using the MS in eq. (44) after 100 timesteps for
L-IPST-C and no-slip BC applied on the orange boundary in fig. 16.

In fig. 20, we plot the L., error in pressure and velocity for
100 timesteps. Clearly, the no-slip BC shows increased error
and a zero-order convergence. However, it does not introduce
error in the pressure.

Thus in this section, we have demonstrated the MMS for
obtaining the order of convergence of boundary condition im-
plementations in SPH.

G. Convergence and extreme resolutions

Thus far we have used particle resolutions in the range
1073 < As <2 x 1072, We wish to study the convergence of
the scheme when much higher resolutions are considered. We
consider a domain of size 1 x 1 with uniformly distributed par-
ticles as shown in fig. 21. In order to reduce computation, we
reduce the size of the domain by half if the number of particles
crosses 1M. In the fig. 21, the red box shows the domain con-
sidered for the computation which one million particles with
As = 1.25 x 107 In order to obtain an unbiased error esti-
mate we consider same MS and the domain shown by black
box in fig. 21 to evaluate L., error using eq. (39).

We first consider the MS given in eq. (30). We solve the
eq. (23) using the L-IPST-C scheme for all the resolutions
with v = .01m?/s. We consider the case where we do not
correct the kernel gradient in the discretization of eq. (23) in
the L-IPST-C scheme.

In fig. 22, we plot the error in pressure and velocity solved
using L-IPST-C scheme with kernel gradient corrected, after
100 timesteps as a function of resolution for sy, = 1.2 and
has = 1.4. Clearly, We obtain second order convergence. In
fig. 23, we plot the error for the case where we do not em-
ploy kernel gradient correction. Clearly, the discretization er-
ror dominates.

We also consider the MS containing a range of frequencies
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952

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
954

FIG. 21. The domain filled by blue fluid particles. The red box*®
shows the smallest domain considered for the highest resolution of®®
8000 x 8000 and the black box shows the area which is considered
to evaluate error for all the resolutions.

—— hxs=12 —e hx=14 =--- O(As?) - Olas)

L. error

1071 Pressure Veocity

FIG. 22. The error in pressure (left) and velocity (right) as a function
of resolution for two different /15 values with the MS in eq. (30).
All cases are solved using L-IPST-C scheme with kernel gradient
correction.

—o— hx=12 —e— hx=14 =--- O(As?) - olas)

L. error

FIG. 23. The error in pressure (left) and velocity (right) as a functiorees
of resolution for two different /15, values with the MS in eq. (30)s6s
All cases are solved using L-IPST-C scheme with no kernel gradienes
correction. 066

given by

10
u(x,y,t) =y*e 1% Y sin (2jmx) cos (27y)
=1

10
v(x,y,1) =—e "% Y sin(2jmy)cos (2jmx)  (47)
j=1

10
p(x,y,1) =10 Z cos (4jmx) 4 cos (4 /).
=1

We simulate the eq. (6) using L-IPST-C scheme for the above
MS. As before, we also consider the case where we do not
employ kernel correction.

—— hp=12 —e— hx=14 === O(Bs?) = o(as)

L. error

Pressure Nelocity

FIG. 24. The error in pressure (left) and velocity (right) as a function
of resolution for two different i values with the MS in eq. (47).
All cases are solved using L-IPST-C scheme with kernel gradient
correction.

—e— hps=12 —e— hp=14 === OAs?) - o(as)

L. error

Pressure

FIG. 25. The error in pressure (left) and velocity (right) as a function
of resolution for two different s values with the MS in eq. (47).
All cases are solved using L-IPST-C scheme with no kernel gradient
correction.

In fig. 24, we plot the error in pressure and velocity solved
using L-IPST-C scheme with kernel gradient correction for
100 timesteps as a function of resolutions. Clearly, both the
cases shows second-order convergence. In fig. 25, we plot the
error in pressure and velocity for the solution obtained using
L-IPST-C scheme with no kernel correction. As can be seen
the kernel correction is essential in order to obtain second-
order convergence at high resolutions.

We have therefore shown that we can consider very high
resolutions using the MMS technique. This enables us to find
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flaws in the scheme which may not converge at very high reso-es
lution. These are hard to test using traditional methods whereos
an actual problem is solved. 007

H. Verification in 3D 1000
1001

‘We now use the MMS to verify a three dimensional solverooz
Since the number of particles in three-dimensions increaseos
much faster than in two-dimensions, we can reduce the dowos
main size with resolution as done while dealing with extremeos
resolutions. We consider a unit cube domain size with 1 mikoos
lion particles. As we increase the resolution, we decrease thewor
size of the domain such that the number of particles in theos
domain remains at 1 million. We consider the MS given by 1000

1010

u(x,y,z,1) =y*e "% sin (7 (2x 4 2z)) cos (7 (2x + 2y))

v(x,,2,1) = — e~ "% sin (1 (2y + 2z2) ) cos (1 (2x + 2y)) i::
w(x,y,2,1) =—e sin(m (2x42z)) cos (m (2y+2z))
Plxyi2.1) = (cos (1 (4 4y)) +cos (x (4 42))) 7.

(4816

We obtain the source term by subjecting the MS in eq. @8y
to the governing equation in eq. (6) with v = 0.01m?/s. we'™
simulate the problem for 10 timesteps. 1010

1020

—e— With kemel correction  —e— No kernel Correction  --= O(As?) -+ ofps) 1021
10:

1023

1024

1025

L. error

1026

1027

Pressure wlocity (1028

2.5x 1073 1072 2.5x 10737 1021020
As hs
1030

FIG. 26. The L., error in pressure (left) and velocity (right) after 1
timesteps as a function of resolution solved using L-IPST-C scheme >
with and without kernel correction. The source term are calculateg),,
using the MS in eq. (48).

1034
1035
In fig. 26, we plot the L. error in pressure and velocity ag;s
a function of resolution for L-IPST-C scheme with and withg,,,
out kernel correction. As expected, the case with no kerngh,,
correction gradually flatten due dominance of discretizatiopy,
error. The case with kernel correction shows second ordeg,,
convergence in both pressure and velocity. Thus we see that
we can easily test the SPH method in a three-dimensional do****
main using the MMS. 1oa2

1043
1044

VI. DISCUSSION 1045

1046
‘We have used the MMS to verify the convergence of diffefosr

ent WCSPH schemes. Thus far, most of the numerical studross
ies of the accuracy and convergence of the WCSPH methogbes

have used either an exact solution like the Taylor-Green vor-
tex problem, or with an established solver, or experimental re-
sult. These methods are therefore limited in their ability to de-
tect specific problems in an SPH implementation. This is true
even in the recent work of Negi and Ramachandran?* where
a Taylor-Green problem and a Gresho-Chan vortex problem
is used. These are complex problems and obtaining a solu-
tion to these involves a significant amount of computation.
Moreover, if the results do not produce the expected accuracy
or convergence, the researcher does not obtain much insight
into the origin of the problem. Furthermore, the established
approaches do not offer any means to study the accuracy of
boundary condition implementations.

In this context, the proposed approach offers a multitude of
advantages listed and discussed below:

e The method is highly efficient in terms of execution
time. We are able to detect problems in the implementa-
tions of specific discretization operators in less than 100
iterations. Even for our most challenging cases with a
million particles, the typical run time for a single com-
putation on a multi-core CPU does not exceed a few
minutes. On the other hand, the comparison study for
the lid-driven cavity case in section III took 150 minutes
for the 200 x 200 resolution.

The method easily works in three dimensions and
we demonstrate its applicability for a simple three-
dimensional case. This is significant because traditional
SPH verifications only use two-dimensional problems.

We can effectively test the boundary condition imple-
mentations through this method. In this work we have
demonstrated this for Dirichlet and Neumann boundary
conditions in both pressure and velocity.

The method allows us to identify very specific problems
with a solver. Through a judicious choice of MS and
time integrator, we can identify if the implementation of
a specific governing equation is the source of a problem.
‘We have demonstrated this with several examples in the
preceding sections.

We are able to verify the order of convergence effi-
ciently even for very high resolutions and thereby test if
the scheme is truly second order convergent as the res-
olution increases. In the present work we have demon-
strated this for extremely high resolutions (involving
8000 x 8000 particles) without needing to simulate the
problem for a long duration and also limiting the num-
ber of computational particles to a smaller number.

The method will work on any manufactured solution
and this allows us to test the scheme with functions in-
volving a large range of frequencies. In contrast, many
exact solutions involve simple functional forms. There-
fore by using the MMS the solver can be tested with a
more challenging class of problems.

As a result of these significant advantages, the proposed
method offers a robust, efficient, and powerful method to ver-
ify the accuracy and convergence of SPH schemes.
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VII. CONCLUSIONS 1103

1104

In this paper we propose the use of the method of manufac:::
tured solutions (MMS) in order to verify an SPH solver. Whileor
the MMS technique is well established in the context of meshos
based methods’, to the best of our knowledge it does not ap**®
pear to have been employed in the context of Lagrangian SPI;I:11
schemes thus far. The application of MMS to Lagrangian SPH,,,
method is non-trivial as the particles move. 1113

In the present work we show for the first time how th¥**
method can be employed to verify the accuracy of any moderd..
weakly-compressible SPH scheme. Specifically, we note that,,,
for successful application of the MMS, quantities like gradient:s
of velocity should be evaluated using the scheme and not witke1e
the gradient of the MS. In this paper, we apply PST to restricf>°
the particles to remain inside the domain boundaries allowingz
us to apply MMS to arbitrary shaped boundaries without thg,,,
need for addition and deletion of particles. We compare differaz2s
ent initial particle distributions used in SPH to obtain a mini*2s
mum number of iterations required for a result independent o‘[“:
initial distribution. We also show that one should not use a dgm
vergence free velocity field while using MMS in SPH for verg2o
ification. We compare the EDAC and the PE-IPST-C schemes:so
and show that the density should be used as a property index3!
pendent of the neighbor particle distribution. We show thdf>>
the method works in arbitrary number of dimensions, allows,,,
us to systematically identify problems quickly in specific disnss
cretizations employed by the scheme, and makes it possible:ss
to verify the accuracy of boundary condition implementation 37
as well. We also demonstrate that the recently proposed faml—m
ily of second order convergent WCSPH schemes?* are indeeg, ,,
second order accurate. Finally, our implementation is opeina:
source (https://gitlab.com/pypr/mms_sph) and our nu4z
merical experiments and results presented are fully automate**
in the interest of reproducibility. Given that convergence an(il': ::
accuracy of SPH schemes is a grand-challenge problem in thg, 6
SPH community®, the present work offers a valuable contrier
bution. 1148

In the future, we propose to use this method to study th§”>
accuracy and convergence of the method in the context of thg,,,
various solid boundary conditions proposed in SPH. Using the:s2
method in the context of inlet and outlet boundary conditionsss
and for free-surfaces may prove challenging and remain to b%:“‘
explored. The method may also be applied in the context of in;,
compressible SPH, compressible SPH, and multi-phase SPHL,,

schemes. We plan to explore these problems in the future. 11ss
1159

38

1160

1161
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