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The Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) method is a Lagrangian method that is typi-9

cally used for the simulation of incompressible fluids. While developing an SPH-based scheme or solver, researchers10

often verify their code with exact solutions, solutions from other numerical techniques, or experimental data. This11

typically requires a significant amount of computational effort and does not test the full capabilities of the solver. Fur-12

thermore, often this does not yield insights on the convergence of the solver. In this paper we introduce the method of13

manufactured solutions (MMS) to comprehensively test a WCSPH-based solver in a robust and efficient manner. The14

MMS is well established in the context of mesh-based numerical solvers. We show how the method can be applied in15

the context of Lagrangian WCSPH solvers to test the convergence and accuracy of the solver in two and three dimen-16

sions, systematically identify any problems with the solver, and test the boundary conditions in an efficient way. We17

demonstrate this for both a traditional WCSPH scheme as well as for some recently proposed second order convergent18

WCSPH schemes. Our code is open source and the results of the manuscript are reproducible.19

I. INTRODUCTION20

It has been more than four decades since the Smoothed Par-21

ticle Hydrodynamics (SPH) was first introduced1,2. SPH is22

a meshless method and is typically implemented using La-23

grangian particles. The method has been applied to a wide24

variety of problems3–5. However, convergence of the SPH25

schemes is still considered a grand challenge problem today6.26

This is in part because of the Lagrangian nature of the scheme.27

In this paper we introduce a powerful, systematic methodol-28

ogy called the method of manufactured solutions7 to study the29

accuracy and convergence of the SPH method.30

The method of manufactured solutions7 is a well estab-31

lished method employed in the finite volume8–10 and finite ele-32

ment11 method communities to verify the accuracy of solvers.33

An important part of this involves the verification of order34

of convergence guarantees provided by the solver. Roache 7
35

and thereafter Salari and Knupp 12 formally introduced the36

idea of verification and validation in the context of compu-37

tational solvers for PDEs. Verification is a mathematical ex-38

ercise wherein we assess if the implementation of a numeri-39

cal method is consistent with the chosen governing equations.40

For example, verification will allow us to check whether the41

numerical implementation of a second-order accurate method42

is indeed second-order. On the other hand, validation tests43

whether the chosen governing equations suitably model the44

given physics. This is often established by comparison with45

the results of experiments.46

According to Roy 13 , verification can be classified into two47

categories namely, code verification, and solution verifica-48

tion. In code verification, the code is tested for its correctness,49

whereas in solution verification, we quantify the errors in the50

solution obtained from a simulation. For example, in solution51

verification we solve a specific problem and estimate the er-52

ror through some means like a grid convergence study. Salari53

and Knupp 12 proposed different methods for code verification54

viz. trend test, symmetry test, comparison test, method of ex-55

act solution (MES), and the method of manufactured solutions56

(MMS).57

In the context of SPH, the comparison test and the method58

of exact solution are used widely to verify new schemes. In59

the comparison test, a solution obtained from an experiment60

or a well-established solver is compared with the solution ob-61

tained from the solver being tested. Many authors14–17 use62

the computational results for the lid-driven cavity and flow63

past a cylinder problems to demonstrate the accuracy of their64

respective solvers. On the other hand, some authors18–20 use65

solutions from established solvers to study the accuracy. In66

the MES, the exact solution of the governing equations is67

used to compare the accuracy as well as the order of con-68

vergence of the solver. For example, some authors14,15,21
69

use the Taylor-Green vortex problem whereas others22,23 use70

the Gresho-Chan vortex problem. We note that none of71

these studies have demonstrated formal second-order conver-72

gence for the Lagrangian Weakly-Compressible SPH (WC-73

SPH) scheme. Recently, Negi and Ramachandran 24 propose74

a family of second-order convergent WCSPH schemes and75

employ the Taylor-Green problem to demonstrate the conver-76

gence.77

Despite their extensive use, the comparison and MES tests78

have several shortcomings12. The comparison test often re-79

quires a significant amount of computation since a full simu-80

lation for some complex problem is usually undertaken requir-81

ing a reasonable resolution and a large number of timesteps to82

attain an appropriate solution. In the case of the MES, there83

are very few exact solutions that exercise the full capabili-84

ties of the solver. For example the Taylor-Green and Gresho-85

Chan vortex problems are usually simulated without any solid86

boundaries and are only available in two-dimensions. The87

problems are also fairly simple and are for incompressible88
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 2

fluids and this imposes additional constraints on WCSPH89

schemes which are not truly incompressible. For example,90

Negi and Ramachandran 24 show that the error of the WC-91

SPH scheme is O(M2), where M is the Mach number of the92

flow, due to the artificial compressibility assumption. Thus,93

the verification process requires that the WCSPH solver be94

executed with significantly larger sound speeds than normally95

employed further increasing the execution time. Moreover,96

these methods cannot ensure that all the aspects of the solver97

are tested for example, it is difficult to find the order of con-98

vergence of the boundary condition implementation.99

The method of manufactured solutions does not suffer100

from these shortcomings and is considered a state-of-the-art101

method for the verification of computational codes. However,102

this method has to our knowledge not been used in the context103

of the SPH thus far. In the MMS, a solution u = φ(x,y,z, t)104

is manufactured such that it is sufficiently complex and satis-105

fies some desirable properties12. We discuss these properties106

in detail in a later section (see section IV). Let the governing107

equation be given by108

Fu = g, (1)109

where F is the differential operator, u is the variable and g is110

the source term. We subject the Manufactured Solution (MS)111

u= φ(x,y,z, t) to the governing differential equation in eq. (1).112

Since φ may not be the solution of the governing equation, we113

obtain a residual,114

r = Fφ −g. (2)115

We add the residual r as a source term to the governing equa-116

tion therefore, the modified equation is given by117

Fu = g+ r. (3)118

We then solve the problem along with this additional source119

term added to the solver. If the solver is correct we should120

obtain the MS, u, as the solution. We add the source term to121

each particle directly and this does not change the solver in122

any other way. The convergence of the solver may be com-123

puted numerically by solving the problem at different resolu-124

tions and finding the error in the solution.125

The MMS is therefore an elegant yet simple technique to126

test the accuracy of a solver without making changes to the127

solver or the scheme. The only requirement is that it be pos-128

sible to add an arbitrary source term to a particular equation.129

It is easy to see that the method can be applied in arbitrary130

dimensions. Further, we may use this technique to also test131

boundary conditions. By employing a carefully chosen MS132

one may use the method to identify specific problems with133

certain discretizations. For example, one may choose an in-134

viscid solution to test only the pressure gradient term in the135

momentum equation. This makes it easy to discover issues in136

the implementation.137

In Feng et al. 25 the authors use an MMS to verify their138

SPH implementation. However, the particles do not move139

and therefore it is no different than a traditional application140

of MMS in mesh-based methods. As mentioned earlier, the141

MMS has not to our knowledge been applied in the context of142

the Lagrangian SPH method in order to study its accuracy.143

It is not entirely clear why this is the case but we conjec-144

ture that this is because the SPH method is Lagrangian and145

the traditional MMS has been applied in the case of tradi-146

tional finite volume and finite element methods. When the147

particles move, it becomes difficult to satisfy the boundary148

conditions and have the particles moving in an arbitrary fash-149

ion. However, these issues can be handled in the context of150

an SPH scheme since it is possible to add and remove par-151

ticles into a simulation. The lack of second order conver-152

gent SPH schemes is also a possible reason for the lack of153

adoption of the MMS in the SPH community. In the present154

work we use the recently proposed second-order convergent155

Lagrangian SPH schemes24 to demonstrate the method. We156

observe that in the present work, all the schemes we consider157

employ some form of particle shifting15,17,26,27. This is crucial158

since the particles can then be constrained inside a solid do-159

main and even if the particles move, their motion is corrected160

by the particle shifting algorithm. We thus do not need to add161

or remove particles from any of our simulations.162

Our major contribution in this work is to show how one163

can apply the MMS to carefully study the accuracy of a mod-164

ern WCSPH implementation. We first obtain a suitable initial165

particle configuration to be used in the simulation. We then166

systematically show the method to construct a MS for estab-167

lished WCSPH schemes as well as the second-order schemes168

proposed by Negi and Ramachandran 24 . We show how this169

can be applied to any specified shape of the domain. We show170

how to apply the MMS in the context of both Eulerian and La-171

grangian SPH schemes. We then demonstrate how the MMS172

can be useful to debug a solver by deliberately changing one173

of the equations in the second-order convergent scheme and174

show the MS construction such that the change is highlighted175

in the order of convergence plot. We then study the con-176

vergence of some commonly used implementations for the177

Dirichlet and Neumann boundary conditions for solids. We178

demonstrate that the method can be used to study convergence179

for extreme resolutions as well as for three dimensional cases.180

The proposed method is very fast as we do not require a large181

number of iterations to verify the convergence. It is impor-182

tant to note that while we focus on verification, a validation183

study must be performed to ensure that the physics is accu-184

rately captured by the solver.185

In summary, we present a simple, efficient, and power-186

ful method to study convergence, and perform code verifica-187

tion of a WCSPH solver. This is very important given that188

the convergence of SPH schemes is still considered a grand-189

challenge problem6. We make our code available as open190

source (https://gitlab.com/pypr/mms_sph) and all the191

results shown in our work are fully automated in the interest192

of reproducibility. In the next section we briefly discuss the193

SPH method followed by the verification techniques used in194

SPH. Thereafter we discuss the MMS method and how it can195

be applied in the context of the WCSPH scheme. We then196

apply the method to a variety of problems.197
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 3

II. THE SPH METHOD198

In the present work, we discretize the domain Ω into199

equally spaced points having mass m and volume ω . We may200

approximate a function f at a point xi in the domain Ω by,201

〈 f (xi)〉= ∑
j

f (x j)Wi jω j, (4)202

where Wi j = W (xi − x j,h), where W is the smoothing kernel203

and h is its support radius, ω j = m j/ρ j, ρ j = ∑ j m jWi j and m j204

is the mass of the particle. The sum j is over all the neighbor205

particles of the particle i. ρ j is commonly called the summa-206

tion density in the SPH literature. The eq. (4) is O(h2) accu-207

rate in a uniform domain with kernel having full support28,29.208

In order to obtain the gradient of the function f at xi using the209

kernel having full support, one may use210

〈∇ f (xi)〉= ∑
j

( f (x j)− f (xi))∇̃Wi jω j, (5)211

where ∇̃Wi j = Bi∇Wi j, where Bi is the Bonet-Lok correction212

matrix30 and where ∇Wi j is the gradient of Wi j w.r.t. xi. In213

a similar manner, many authors15,29–32 propose various dis-214

cretizations of the gradient, divergence, and Laplacian of a215

function; these various forms are summarized and compared216

in 24.217

The SPH method can be used to solve the Weakly-218

Compressible SPH equation given by219

d ̺

dt
=− ̺ ∇ ·u,

du

dt
=−

∇p

̺
+ν∇2u,

(6)220

where ̺, u, and p are the density, velocity, and pressure of the221

flow, respectively, and ν is the dynamic viscosity of the fluid.222

We note here that ̺ is different from the summation density ρ .223

We use ρ j to estimate the particle volume, ω j. The governing224

equations in eq. (6) are completed by linking the pressure p225

to density ̺ using an equation of state. There are many differ-226

ent schemes14–16,21,33 that solve eq. (6). However, they all fail227

to show second-order convergence. Recently, Negi and Ra-228

machandran 24 performed a convergence study of various dis-229

cretization operators, and propose a family of second-order230

convergent schemes. In this paper, we use these schemes to231

demonstrate the new method to study convergence of SPH232

schemes and compare it with the Entropically damped arti-233

ficial compressibility (EDAC) scheme14. We summarize the234

schemes considered in this study as follows:235

1. L-IPST-C (Lagrangian-Iterative PST-Coupled scheme),236

which is a second order scheme proposed in 24, where237

we discretize the continuity equation as,238

d ̺i

dt
=− ̺i ∑

j

(u j −ui) · ∇̃Wi jω j. (7)239

We discretize the momentum equation as,240

dui

dt
=−∑

j

(p j − pi)

̺i

∇̃Wi jω j+

ν ∑
j

(〈∇u〉 j −〈∇u〉i) · ∇̃Wi jω j

(8)241

where ˜∇Wi j = Bi∇Wi j, where Bi is the correction ma-242

trix30, and the 〈∇u〉i is the first order consistent gradient243

approximation given by244

〈∇u〉i = ∑
j

(u j −ui)⊗ ∇̃Wi jω j. (9)245

In order to complete the system, we use a linear equa-246

tion of state (EOS) where we link pressure with the fluid247

density ̺ given by248

pi = c2
o(̺i − ̺o), (10)249

where co is the artificial speed of sound and ̺o is the ref-250

erence density. We use the standard Runge-Kutta sec-251

ond order integrator for time stepping. The time step ∆t252

is set using the stability condition given by253

∆tc f l =0.25
h

co +U
,

∆tviscous =0.25
h2

ν
,

∆t f orce =0.25

√

h

|g|
,

∆t =min(∆tc f l ,∆tviscous,∆t f orce),

(11)254

where U is the maximum velocity in the domain, g is255

the magnitude of the acceleration due to gravity. For256

all over testcase, we set co = 20m/s irrespective of the257

maximum velocity in the domain. After every ten time258

step, particle shifting is applied using iterative particle259

shifting technique (IPST) to redistribute the particle in260

order to obtain a uniform distribution. We perform first261

order Taylor-series correction for velocity, and density262

after shifting.263

2. PE-IPST-C (Pressure Evolution-Iterative PST-Coupled264

scheme): This method is a variation of the L-IPST-C265

scheme where a pressure evolution equation is used in-266

stead of a continuity equation24. The pressure evolution267

equation is given by268

d p

dt
=− ̺ c2

o∇ ·u+νedac∇2 p, (12)269

where νedac = αhco/8 with α = 0.5. The SPH dis-270

cretization of eq. (12) is given by271

d p

dt
=− ̺i c2

o ∑
j

(u j −ui) · ∇̃Wi jω j+

νedac ∑
j

(〈∇p〉 j −〈∇p〉i) · ∇̃Wi jω j,
(13)272
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 4

where 〈∇p〉i is evaluated using second-order consistent273

approximation. Since the pressure is linked with den-274

sity, we evaluate the density by inverting the linear EOS275

given by276

̺i=
pi

c2
o

+ ̺o . (14)277

3. TV-C (Transport Velocity-Coupled): In this method, we278

start with the Arbitrary Eulerian Lagrangian SPH equa-279

tion16,34 given by280

d̃ ̺

dt
=− ̺ ∇ · (u+δu)+∇ · (̺ δu),

d̃u

dt
=−

∇p

̺
+ν∇2u+∇ · (u⊗δu)−u∇(δu),

(15)281

where
d̃(·)
dt

= ∂ (·)
∂ t

+(u+δu) ·∇(·) and δu is the shifting282

velocity computed using283

δu =−M(2h)co ∑
j

[

1+R

(

Wi j

W (∆s)

)n]

∇Wi jω j, (16)284

where R = 0.24, and n = 435. We note that the density285

̺ is treated as a fluid property independent of particle286

positions24. The main idea is to redistribute the particles287

using a shifting force in the governing equations instead288

of performing shifting post step. All the terms in the289

eq. (15) are discretized using a second-order accurate290

formulation as done in case of the L-IPST-C scheme291

(for details refer to 24).292

4. E-C : This is an Eulerian method proposed by Negi293

and Ramachandran 24 . The governing equations for the294

scheme is given by295

∂ ̺

∂ t
=− ̺ ∇ ·u−u ·∇ ̺,

∂u

∂ t
=−

∇p

̺
+ν∇2u−u ·∇u.

(17)296

A similar method was proposed by Nasar et al. 23 . How-297

ever, unlike the E-C method they evaluate the density298

as a function of particle distribution. This assumption299

allowed them to set the last term in the continuity equa-300

tion equal to zero. This results in an increased error in301

the pressure as shown in 24. All the terms in the gov-302

erning equations in the eq. (17) are discretized using a303

second order accurate formulation as done in case of304

L-IPST-C scheme.305

5. EDAC: In this method, proposed by Ramachandran306

and Puri 14 , we employ the pressure evolution equation;307

however, density is evaluated using summation density308

formulation (̺= ρ in eq. (12)). Unlike the other meth-309

ods considered above, this is not a second order accu-310

rate method. The discretization of the pressure evolu-311

tion in eq. (12) is given by312

d pi

dt
= ∑

j

m jρi

ρ j

c2
o(ui −u j) ·∇Wi j. (18)313

The momentum equation is discretized as314

dui

dt
=

1

mi
∑

j

(V 2
i +V 2

j )

[

p̃i j∇Wi j + η̃i j

(ui −u j)

r2
i j +ηh2

i j

∇Wi j · ri j

]

,

(19)

315

where p̃i j =
ρ j pi+ρi p j

ρi+ρ j
, and η̃i j =

2ηiη j

ηi+η j
, where ηi = ρiνi.316

In the next section, we consider the standard approach em-317

ployed in most SPH literature where a code verification is per-318

formed to verify the SPH method.319

III. CODE VERIFICATION IN SPH320

Verification and validation of a numerical method are321

equally important. Verification of the accuracy and conver-322

gence of a solver is found using exact solutions, solutions323

from existing solvers, experimental results, or manufactured324

solutions. The verification can also be used to identify bugs325

in the solver. On the other hand, validation ensures that the326

governing equations are appropriate for the physics and often327

involves comparison with experimental results.328

Verification is of two kinds: (i) code verification, where we329

test the code of the numerical solver for correctness and accu-330

racy, and (ii) solution verification, where we quantify the error331

in a solution obtained. In this paper, we focus on the code ver-332

ification techniques applied to SPH. The different techniques333

for code verification12 are:334

• Trend test: Where we use an expert judgment to ver-335

ify the solution obtained. For example, the velocity of336

the vortex in a viscous periodic domain should diminish337

with time. If the solver shows an increase of the veloc-338

ity in the domain, then there is an error in the solver.339

• Symmetry test: Where we ensure that the solution ob-340

tained does not change if the domain is rotated or trans-341

lated. For example, if we implement an inlet assuming342

the flow in the x direction, we will get an erroneous re-343

sult on rotating the domain by 90 degree.344

• Comparison test: Where we compare the solution ob-345

tained from the solver with the solutions from an estab-346

lished solver or experiment. This method has been used347

widely by many authors in the SPH community14–19 to348

show the correctness of their respective works.349

• Method of exact solution (MES): Where we solve a350

problem for which the exact solution is known. For ex-351

amples, in 24 this method is applied to the Taylor-Green352

problem for which an exact solution is known. Some353

authors29,36 use exact solution for 1D and 2D conduc-354

tion problems to demonstrate convergence.355

In the context of SPH, out of the above mentioned methods356

comparison test and MES are employed widely. We compare357

solutions for the Taylor-Green and lid-driven cavity problems358

which are the examples of MES and comparison test, respec-359

tively.360
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 5

The Taylor-Green problem has an exact solution given by361

u =−Uebt cos(2πx)sin(2πy),

v =Uebt sin(2πx)cos(2πy),

p =−0.25U2e2bt(cos(4πx)+ cos(4πy)),

(20)362

where b = −8π2/Re, where Re is the Reynolds number of363

the flow. We consider Re = 100 and U = 1m/s. We solve this364

problem for three different resolutions viz. 50×50, 100×100,365

and 200×200 for a two-dimensional domain of size 1m×1m366

for 2 sec using L-IPST-C scheme. However, we discretize the367

pressure gradient using the formulation given by368

〈

∇p

̺

〉

= ∑
j

(p j + pi)

̺i

∇̃Wi jω j (21)369

In fig. 1, we plot the decay in the velocity magnitude with370

FIG. 1. The decay in velocity magnitude for different resolutions

compared with the exact solution for the Taylor-Green problem.
371

372

time for different resolution compared with the exact solution.373

Clearly, the decay in the velocity magnitude is very close to374

the expected result.375

In the lid-driven cavity problem, we consider a two-376

dimensional domain of size 1m× 1m with 5 layers of ghost377

particles representing the solid particles. The top wall at378

y = 1m is given a velocity u = 1m/s along the x-direction.379

We solve the problem using the L-IPST-C scheme for differ-380

ent resolution for 10 sec. However, we discretize the viscous381

term using the method given by Cleary and Monaghan 37 . In382383

fig. 2, we plot the velocity along the centerline x = 0.5 of the384

domain compared with the result of Ghia, Ghia, and Shin 38 .385

Clearly, the increase in resolution improves the accuracy.386

We note that many researchers14–19 use the above approach387

to verify their SPH schemes. Unfortunately, in both prob-388

lems discussed above we used a discretization which is not389

second-order accurate. Evidently, these kind of verification390

techniques are unable to detect such issues. In addition, the391

simulations take a significant amount of time. For example,392

FIG. 2. The velocity along x and y direction along the center line

x = 0.5 of the domain for the lid-driven cavity problem

the 200×200 resolution lid-driven cavity case took 150 min-393

utes. In the case of the Taylor-Green problem since the exact394

solution is known one can evaluate the L1 error in velocity or395

pressure. In fig. 3, we plot the L1 error in velocity as a function396

FIG. 3. The L1 error in velocity for the Taylor-Green problem.
397

398

of particle spacing. The L1 error is not second-order and di-399

verges as we increase resolution from 100×100 to 200×200.400

However, this result does not suggest to us the exact reason401

for the error.402

In general, one cannot exercise specific terms in the govern-403

ing differential equation (GDE) in all the methods described404

above. Therefore, the source of error cannot be determined.405

For example, the solver may show convergence in the case406

of the Gresho-Chan vortex problem but fail for the Taylor-407

Green vortex problem due to an issue with the discretization408

of the viscous term. It is only recently39 that an analytic solu-409

tion for three dimensional Navier-Stokes equations has been410

proposed. Other recent work40 has only focused on numeri-411
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 6

cal investigation. It is therefore difficult to apply the MES in412

three dimensions. Furthermore, such studies require an even413

larger computational effort. Finally, we note that the Taylor-414

Green vortex problem is for an incompressible fluid making it415

difficult to test a WCSPH scheme.416

Therefore, in the context of SPH, the comparison and MES417

techniques are insufficient and inefficient. We require a better418

method to verify the solver before proceeding to validation.419

The method of manufactured solutions offers exactly such a420

technique and this is described in the next section.421

IV. THE METHOD OF MANUFACTURED SOLUTIONS422

In conventional finite volume and finite element schemes, it423

is mandatory to demonstrate the order of convergence and the424

MMS has been used for this8,11,41. For the SPH method, ob-425

taining second-order convergence has itself been a challenge6
426

until recently24. Moreover, to the best of our knowledge the427

MMS method has not been applied in the context of SPH. In428

this paper, we apply the principles of MMS to formally verify429

SPH solvers in a fast and reliable manner. The technique facil-430

itates a careful investigation of the the various discretization431

operators, the boundary condition implementation, and time432

integrators.433

In MMS, an artificial or manufactured solution is assumed.434

Let us assume the manufactured solution (MS) for ̺, u, and p435

in eq. (6) are ˜̺ , ũ, and p̃, respectively. Since the MS is not the436

solution of the eq. (6), we obtain a residue,437

s̺ =
d ˜̺

dt
+ ˜̺∇ · ũ,

su =
dũ

dt
+

∇ p̃

˜̺
−ν∇2ũ,

(22)438

where s̺ and su are the residue term for continuity and mo-439

mentum equation, respectively. Since, we have the closed440

form expression for all the terms in the RHS of the eq. (22),441

we may introduce the residue terms as source terms in the gov-442

erning equations. We write the modified governing equations443

as444

d ̺

dt
=− ̺ ∇ ·u+ s̺,

du

dt
=−

∇p

̺
+ν∇2u+ su.

(23)445

Finally, we solve the eq. (23). The addition of the source terms446

ensures that the solution is ˜̺ , ũ, and p̃.447

One must take few precautions while employing the448

MMS12:449

1. The MS must be Cn smooth where n is the order of the450

governing equations.451

2. It must exercise all the terms i.e., for any evolution452

equation the MS cannot be time-independent.453

3. The MS must be bounded in the domain of interest. For454

example, the MS u = tan(x) in the domain [−π,π] is455

not bounded thus, should not be used.456

4. The MS should not prevent the successful completion of457

the code. For example, if the code assumes the solution458

to have positive pressure, then the MS must make sure459

that the pressure is not negative.460

5. The MS should make sure that the solution satisfies the461

basic physics. For example, in a shear layer flow with462

discontinuous viscosity, the flux must be continuous.463

We note that the MS may not be physically realistic.464

We modify the basic steps for MMS proposed by465

Oberkampf and Roy 42 for use in the context of WCSPH as466

follows:467

1. Obtain the modified form of the governing equations as468

employed in the scheme. For example, in case of the469

δ -SPH scheme43, the continuity equation used is,470

d ̺

dt
=− ̺ ∇ ·u+D∇2 ̺, (24)471

where D = δhco is the damping used, and δ is a numer-472

ical parameter. The additional diffusive term in eq. (24)473

must be retained while obtaining the source term.474

2. Construct the MS using analytical functions. The gen-475

eral form of MS is given by476

f (x,y, t) = φo +φ(x,y, t), (25)477

where f is any property viz. ̺, u, or p; φo is a constant,478

and φ(x,y, t) is a function chosen such that the five pre-479

cautions listed above are satisfied.480

3. Obtain the source term as done in eq. (22).481

4. Add the source term in the solver appropriately. In482

SPH, the source term s = s(x,y,z, t), is discretized as483

si = s(xi,yi,zi, t) where subscript i denotes the ith parti-484

cle.485

5. Solve the modified equations using the solver for differ-486

ent particle spacings/smoothing length (h). The proper-487

ties on the boundary particles are updated using the MS.488

We note that in the context of WCSPH schemes, one489

should not evaluate the derived quantities like gradient490

of velocity using the MS on the solid boundary.491

6. Evaluate the discretization error for each resolution. We492

evaluate the error using493

L1(h) = ∑
j
∑

i

| f (xi, t j)− fo(xi, t j)|

N
∆t, (26)494

where f is the property of interest, N is the total number495

of particles and ∆t is the time interval between consec-496

utive solution instances.497

7. Compute the order of accuracy and determine whether498

the desired order is achieved.499
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 7

The solver involves discretization of the governing equa-500

tions and appropriate implementation of the boundary con-501

ditions. The MMS can be used to determine the accuracy of502

both. However, to obtain the accuracy of boundary conditions,503

the order of convergence of the governing equations should be504

at least as large as that of the boundary conditions10. Bond505

et al. 44 and Choudhary 9 proposed a method to construct MS506

for boundary condition verification. In order to obtain a MS507

for a boundary surface given as F(x,y,z) =C, we multiply the508

original MS with (C−F(x,y,z))m. We write the new MS as509

fBC(x,y, t) = φo +(C−F(x,y,z))mφ(x,y, t), (27)510

where m is the order of the boundary condition. For example,511

for the Dirichlet boundary m = 1 and for Neumann boundary512

m = 2.513

In the next section, we demonstrate the application of MMS514

to obtain the order of convergence for the schemes listed in515

section II.516

V. RESULTS517

In this section, we apply the MMS to obtain the order of518

convergence of various schemes along with their boundary519

conditions. We first determine the initial particle configura-520

tion viz. unperturbed, perturbed, or packed45 required for the521

MMS. We then demonstrate that one can apply the MMS to522

arbitrarily-shaped domains. We then compare the EDAC and523

PE-IPST-C schemes which differ in the treatment of the den-524

sity. We next apply the MMS to E-C and TV-C schemes as525

they employ different governing equations compared to stan-526

dard WCSPH in eq. (6). We also demonstrate the application527

of the MMS method as a technique to identify mistakes in the528

implementation. Finally, we employ the MMS to obtain the529

order of convergence of solid wall boundary conditions. We530

consider the boundary condition proposed by Maciá et al. 46
531

for the demonstration.532

In all our test cases, we use the quintic spline kernel with533

h∆s = h/∆s = 1.2, where ∆s is the initial inter-particle spac-534

ing. We consider a domain of size 1m× 1m. We simulate all535

the test cases for 50× 50, 100× 100, 200× 200, 250× 250,536

400 × 400, 500 × 500, and 1000 × 1000 resolutions to ob-537

tain the order of convergence plots. In all our simulations,538

we initialize the particles properties using the MS. We then539

solve eq. (23) and set the properties on any solid particle us-540

ing the MS before every timestep. We set a fixed time step541

corresponding to the highest resolution for all the other reso-542

lutions. The appropriate time step is chosen using the criteria543

in eq. (11). We evaluate the L1 error using eq. (26) in the544

solution.545

The implementation of the code for the source terms (as546

shown in eq. (22)) due to the MS are automatically gener-547

ated using the sympy47 and mako48 packages. We recommend548

this approach to avoid mistakes during implementation. Salari549

and Knupp 12 used a similar approach to automatically gen-550

erate the source term for their solvers. We use the PySPH49
551

framework for the implementation of the schemes described552

in this manuscript. All the figures and plots in this manuscript553

are reproducible with a single command through the use of554

the automan50 framework. The source code is available at555

https://gitlab.com/pypr/mms_sph.556

A. The effect of initial particle configuration557

The initial particle configuration plays a significant role in558

the error estimation since the divergence of the velocity is cap-559

tured accurately when the particles are uniformly arranged24.560

In this test case, we consider three different initial configu-561

rations of particles, widely used in SPH literature viz. unper-562

turbed, perturbed, and packed. The unperturbed configuration563

is the one where we place the particles on a Cartesian grid564

such that the particles are at a constant distance along the grid565

lines. In the perturbed configuration, we perturb the particles566

initially placed on a Cartesian grid by adding a uniformly dis-567

tributed random displacement as a fraction of the inter-particle568

spacing ∆s. For the packed configuration, we use the method569

proposed in24,51 to resettle the particles from a randomly per-570

turbed distribution to a new configuration such that the num-571

ber density of the particles is nearly constant. In fig. 4, we572

show all the initial particle distributions with the solid bound-573

ary particles in orange.574

FIG. 4. The different initial particle arrangements in blue with the

solid boundary in orange.

We consider the MS of the form575

u(x,y, t) =e−10t sin(2πx)cos(2πy)

v(x,y, t) =− e−10t sin(2πy)cos(2πx)

p(x,y, t) =e−10t (cos(4πx)+ cos(4πy))

̺ (x,y, t) =
p

c2
o

+ ̺o

(28)576

where, we set co = 20m/s for all our testcases. The MS com-577

plies with all the required conditions discussed in section IV.578

We note that the MS chosen resembles the exact solution of579

the Taylor-Green problem. However, since the solver simu-580

lates the NS equation using a weakly compressible formula-581

tion, we obtain additional source terms when we substitute the582

MS to eq. (6) with ν = 0.01m2/s. We obtain the source terms583

from the symbolic framework, sympy as,584
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 8

su(x,y, t) =2πue−10t cos(2πx)cos(2πy)−2πve−10t sin(2πx)sin(2πy)−10e−10t sin(2πx)cos(2πy)+

0.08π2e−10t sin(2πx)cos(2πy)−
4πe−10t sin(4πx)

̺
,

sv(x,y, t) =2πue−10t sin(2πx)sin(2πy)−2πve−10t cos(2πx)cos(2πy)−0.08π2e−10t sin(2πy)cos(2πx)+

10e−10t sin(2πy)cos(2πx)−
4πe−10t sin(4πy)

̺
,

s̺(x,y, t) =−
4πue−10t sin(4πx)

c2
0

−
4πve−10t sin(4πy)

c2
0

−
10(cos(4πx)+ cos(4πy))e−10t

c2
0

.

(29)585

We add su = su î+ sv ĵ to the momentum equation and s̺ to586

the continuity equation as shown in eq. (23). We solve the587

modified WCSPH equations in eq. (23) using the L-IPST-C588

method for 100 timesteps where we initialize the domain us-589

ing eq. (28). The values of the properties u, p, and ̺ on the590

(orange) solid particles are set using eq. (28) at the start of591

every time step.592

FIG. 5. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (28) and the source term in

eq. (29) after 10 timesteps for the different configurations.

In fig. 5, we plot the L1 error in pressure and velocity af-593

ter 10 timesteps as a function of resolution for different initial594

particle distributions. Clearly, the difference in initial config-595

uration affects the error in pressure by a large amount. How-596

ever, in velocity, the error is large in the case of the perturbed597

configuration only. The unperturbed configuration has zero598

divergence error at t = 024. Whereas, the perturbed configura-599

tion has high error due to the random initialization. Over the600

course of a few iterations, there is no significant difference be-601

tween the distribution of particles for the unperturbed and the602

packed configurations. Therefore, we simulate the problems603

for 100 timesteps for a fair comparison.604

In fig. 6, we plot the L1 error in pressure and velocity after605

100 timesteps as a function of resolution for the cases con-606

sidered. Clearly, the difference in error is reduced. However,607

the order of convergence is not captured accurately. This is608

because the initial divergence is not captured accurately by609

the packed and perturbed configurations. This difference can610

be avoided through the use of a non-solenoidal velocity field.611

FIG. 6. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (28) and the source term in

eq. (29) after 100 timesteps for all the configurations.

Therefore we consider the following modified MS,612

u(x,y, t) =y2e−10t sin(2πx)cos(2πy)

v(x,y, t =− e−10t sin(2πy)cos(2πx)

p(x,y, t) =(cos(4πx)+ cos(4πy))e−10t

(30)613

FIG. 7. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (30) and the corresponding

source terms after 100 timesteps for all the configurations.

We note that the new MS velocity field is not divergence-614

free. We obtain the source term with ν = 0.01m2/s as done615

in eq. (29). We simulate the problem by initializing the do-616

main using MS in eq. (30). We also update the solid bound-617

ary properties using this MS before every timestep. In fig. 7,618

we plot the L1 error for pressure and velocity as a function619
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 9

of resolution. Clearly, both the packed and unperturbed do-620

main show second-order convergence. Whereas, the perturbed621

configuration fails to show second-order convergence. There-622

fore, in the context of WCSPH schemes, one should not use a623

divergence-free field in the MS. Furthermore, one should use624

either a packed or unperturbed configuration for the conver-625

gence study.626

It is important to note that in stark contrast the Taylor-Green627

vortex problem the method shows second-order convergence628

irrespective of the value of co. In Negi and Ramachandran 45
629

a much higher co = 80m/s was necessary in order to demon-630

strate second-order convergence. Furthermore, the conver-631

gence is independent of the initial configuration after 100632

steps; therefore, we recommend simulating all the testcases633

for at least 100 timesteps to obtain the true order of conver-634

gence. It is important to note that some discretizations are635

second-order accurate when an unperturbed configuration is636

used24. In order to test the robustness of the discretization we637

recommend using a packed configuration.638

B. The selection of the domain shape639

We now show the effect of the shape of the domain on the640

convergence of a scheme. We consider a square-shaped and a641

butterfly-shaped domain as shown in fig. 8.642

FIG. 8. The different domain shapes with solid particles in orange

and fluid particles in blue.

FIG. 9. The L1 error in pressure (left) and velocity (right) with in-

crease in resolution for different shapes of the domain.

We consider the MS with the non-solenoidal velocity field643

in eq. (30) as used in the previous testcase. The source644

terms obtained remains same as before, where we consider645

ν = 0.01m2/s. We solve the modified equations using the646

L-IPST-C scheme for 100 time step for each domain. We ini-647

tialize the fluid and solid particles using the MS in eq. (30).648

We update the properties of the solid particles before every649

timestep using the same MS.650

In fig. 9, we show the convergence of L1 error after 100651

timesteps in pressure and velocity as a function of resolution652

for both the domain considered. Clearly, both the domains653

considered show second-order convergence. Hence, one can654

consider any shape of the domain for the convergence study of655

WCSPH schemes using MMS. However, we only use square-656

shaped domain for all our test cases.657

C. Comparison of EDAC and PE-IPST-C658

In this testcase, we compare the convergence of EDAC14
659

and PE-IPST-C24 schemes. These two schemes have two ma-660

jor differences. First, the discretizations used in PE-IPST-C661

method are all second-order accurate in contrast to the EDAC662

scheme. Second, the volume of the fluid given by663

Vi =
1

∑ j Wi j

, (31)664

is used in the discretization of the term
∇p
̺

whereas, in PE-665

IPST-C the density ̺ is independent of neighbor particle posi-666

tions. We evaluate ̺ using a linear equation of state, eq. (14)667

In the EDAC scheme the initial configuration of particles668

affects the results. Therefore, we consider an unperturbed669

configuration as shown in fig. 4. In order to reduce the com-670

plexity, we consider an inviscid MS given by671

u(x,y) =sin(2πx)cos(2πy)

v(x,y) =− sin(2πy)cos(2πx)

p(x,y) =cos(4πx)+ cos(4πy).

(32)672

Thus, the solver must maintain the pressure and velocity fields673

in the absence of the viscosity. The source term for the EDAC674

scheme is given by675
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 10

su(x,y) =2πucos(2πx)cos(2πy)−2πvsin(2πx)sin(2πy)−
4π sin(4πx)

ρ

sv(x,y) =2πusin(2πx)sin(2πy)−2πvcos(2πx)cos(2πy)−
4π sin(4πy)

ρ

sp(x,y) =−1.25h
(

−16π2 cos(4πx)−16π2 cos(4πy)
)

−4πusin(4πx)−4πvsin(4πy).

(33)676

We note that the source term employs density ρ which is a677

function of particle position given by mi
Vi

, where mi is the mass678

of the particle. In the case of the PE-IPST-C scheme, the679

source term is given by680

su(x,y) =2πucos(2πx)cos(2πy)−2πvsin(2πx)sin(2πy)−
4π sin(4πx)

̺

sv(x,y) =2πusin(2πx)sin(2πy)−2πvcos(2πx)cos(2πy)−
4π sin(4πy)

̺

sp(x,y) =−1.25h
(

−16π2 cos(4πx)−16π2 cos(4πy)
)

−4πusin(4πx)−4πvsin(4πy).

(34)681

We note that the source term sp in eq. (33) and eq. (34) are682

same. We simulate the problem with the MS in eq. (32). The683

(orange) solid boundary properties are reset using this MS be-684

fore every time step.685

FIG. 10. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (32), and the source term in

eq. (33) for EDAC and eq. (34) for PE-IPST-C after 1 timestep.

FIG. 11. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (32), and the source term in

eq. (33) for EDAC and eq. (34) for PE-IPST-C after 100 timestep.

In fig. 10, we plot the L1 error in pressure and velocity af-686

ter one timestep for both the schemes. Clearly, the EDAC687

case diverges in the case of pressure, whereas we observe a688

reduced order of convergence in velocity. In contrast, the689

PE-IPST-C scheme shows second-order convergence in ve-690

locity and higher in case of pressure. We observe this in-691

creased order only for the first iteration. In fig. 11, we plot692

the L1 error in pressure and velocity after 100 timesteps for693

both the schemes. In the case of the EDAC scheme, the or-694

der of convergence in the velocity does not remains first-order695

whereas, the L-IPST-C scheme shows second-order conver-696

gence in both pressure and velocity.697

We note that, we use an unperturbed mesh therefore we698

must obtain second-order convergence to the level of dis-699

cretization error for 1 timestep in the case of the EDAC700

scheme as well. We observe this behavior since ρ (a func-701

tion of neighbor particle positions) is present in the source702

term which comes from the governing differential equation.703

Therefore, as mentioned in 24, we should treat ρ as a separate704

property as we do in the case of the PE-IPST-C scheme.705

D. Comparison of E-C and TV-C706

In this test case, we apply MMS to E-C and TV-C schemes707

introduced in section II. The governing equations for E-C708

scheme is given in eq. (17) whereas for TV-C in eq. (15). The709

expression for the source terms turns out to be same for both710

eq. (17) and eq. (15) governing equations given by711

s̺ =
∂ ̺

∂ t
+ ̺ ∇ ·u+u ·∇ ̺,

su =
∂u

∂ t
+

∇p

̺
−ν∇2u+u ·∇u.

(35)712

These source terms are the same as obtained in the case of the713

L-IPST-C scheme as well. In E-C scheme, we fix the grid and714
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 11

add the convective term as the correction, whereas in TV-C715

scheme, we add the shifting velocity in the LHS of the gov-716

erning equations.717

In order to show the convergence of the scheme, we con-718

sider the inviscid MS in eq. (32) with the linear EOS. We do719

not consider the viscous term since the term introduces similar720

error in both the schemes. We write the source term as721

su(x,y) =2πucos(2πx)cos(2πy)−2πvsin(2πx)sin(2πy)−
4π sin(4πx)

̺
,

sv(x,y) =2πusin(2πx)sin(2πy)−2πvcos(2πx)cos(2πy)−
4π sin(4πy)

̺
,

s̺(x,y) =−
4πusin(4πx)

c2
0

−
4πvsin(4πy)

c2
0

,

(36)722

where su = su î + suĵ is the source term for the momentum723

equation in both the schemes. We consider an unperturbed724

initial particle distribution and run the simulation for 100725

timesteps. The particles are initialized with the MS in eq. (32)726

and solid boundary are reset using the MS before every time727

step.728

FIG. 12. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (32) and the source term in

eq. (36) after 100 timesteps for the different schemes.

In fig. 12, we plot the L1 error in pressure and velocity as729

a function of resolution for both the schemes. Since we use730

second-order accurate discretization in both the schemes, they731

show second-order convergence in both pressure and velocity732

as expected. Thus, we see that the modified governing equa-733

tions (eq. (15) and eq. (17)) must be considered to obtain the734

source term for the schemes.735

E. Identification of mistakes in the implementation736

In this section, we demonstrate the use of MS as a technique737

to identify mistakes in the implementation. We use the L-738

IPST-C scheme, and introduce either erroneous or lower order739

discretization for a single term in the governing equations. We740

then use the proposed MMS to identify the problem.741

1. Wrong divergence estimation742

We introduce an error in the discretized form of the con-743

tinuity equation used in the L-IPST-C scheme. We refer to744

this modified scheme as incorrect CE. We write the incorrect745

discretization for the divergence of velocity as746

〈∇ ·u〉= ∑
j

(u j+ui) · ∇̃Wi jω j, (37)747

where the error is shown in red. Since only the continuity748

equation is involved, we use the inviscid MS given by749

u(x,y) =(y−1)2
sin(2πx)cos(2πy)

v(x,y) =− sin(2πy)cos(2πx)

p(x,y) =(y−1)(cos(4πx)+ cos(4πy))

(38)750

The source terms can be determined by subjecting the above751

MS to eq. (6). We simulate the problem for 1 timestep with752

a packed domain (see fig. 4). In order to test erroneous or753

lower order discretization in the scheme, we recommend the754

simulation of only one timestep with a packed initial particle755

distribution.756

FIG. 13. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (32) and the source term

in eq. (36) after 1 timestep for L-IPST-C and the scheme with the

divergence computed using the incorrect eq. (37).
757

758

In fig. 13, we plot the L1 error in pressure and velocity759

as a function of the resolution for the L-IPST-C scheme and760
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 12

its variant incorrect CE with two time integrators, Euler and761

RK2. Clearly, the error in pressure increases by a significant762

amount and the order of convergence is zero for incorrect CE.763

However, the error in pressure propagates to velocity in case764

of the RK2 integrator. Therefore, we recommend that one use765

single stage integrators while using MMS as a technique to766

identify mistakes. By looking at incorrect CE-Euler plot in767

fig. 13 we can immediately infer that there is an error in either768

the continuity equation or the equation of state.769

2. Using a symmetric pressure gradient discretization770

In this testcase, we use a symmetric formulation as used by771

21, 24, and 52 for the pressure gradient term in the L-IPST-772

C scheme. We refer to this method as sym. Since only the773

pressure gradient is involved, we use the same MS as in the774

previous case.775

FIG. 14. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (32) and the source term in

eq. (36) after 1 timestep for L-IPST-C and the scheme with pressure

gradient computed using symmetric formulation.
776

777

In fig. 14, we plot the L1 error after 1 timestep in pressure778

and velocity as a function of resolution for L-IPST-C and sym779

schemes. Clearly, the order of convergence is affected in the780

velocity only. Therefore, it is evident that a inconsistent pres-781

sure gradient discretization is used.782

3. Using inconsistent discrete viscous operator783

In this testcase, we use the formulation proposed by Cleary784

and Monaghan 37 to approximate the viscous term in the L-785

IPST-C scheme. We refer to this method as Cleary. Since786

viscosity is involved, we use the MS involving viscous effect787

given by eq. (30). While testing the viscous term we use a788

high value of ν = .25m2/s such that the error due to viscosity789

dominates the error in the momentum equation. We simu-790

late the problem with a packed configuration of particles for 1791

timestep using the MS in eq. (30) and with the corresponding792

source terms. We fix the timestep using eq. (11) such that we793

satisfy the stability condition.794795

In fig. 15, we plot the L1 error in pressure and velocity as796

a function of resolution for L-IPST-C and Cleary schemes.797

FIG. 15. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (30) and the corresponding

source term after 1 timestep for L-IPST-C and the scheme with vis-

cous term discretized using formulation given by Cleary and Mon-

aghan 37 .

Since the viscous formulation by Cleary and Monaghan 37
798

does not converge in the perturbed domain24, we observe di-799

vergence in the velocity. Therefore, we infer that there is an800

error in the viscous term.801

F. MMS applied to boundary condition802

In this section, we use MMS to verify the convergence of803

boundary conditions in SPH. In order to do this, the scheme804

used must converge at least as fast as the boundary conditions.805

Therefore, we consider the second-order convergent L-IPST-806

C scheme. We study the Dirichlet boundary conditions for807

pressure and velocity, no-slip and slip velocity boundary con-808

ditions, and the Neumann pressure boundary condition. We809

consider an unperturbed domain as shown in fig. 16, where810

we solve the fluid equations using the L-IPST-C scheme for811

the blue particles and set the MS before every time step for812

the green particles. We set the properties in the orange par-813

ticles using the appropriate boundary condition we intend to814

test. For example, if we set the pressure Dirichlet boundary815

condition in SPH then we set velocity and density using the816

MS. In order to obtain rate of convergence, we evaluate L∞817

FIG. 16. Different particle used for testing the boundary condition

with fluid in blue, MS solid boundary in green, and SPH solid bound-

ary in orange.
818

819
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 13

error using,820

L∞(N) = max{| f (xi)− f (xo)|, i = 1, . . . ,N}, (39)821

where N is the total number of fluid particles for which y >822

0.9, and f (xi) and f (xo) are the computed and exact value of823

the property of interest, respectively. We consider only a por-824

tion near the boundary since only that region is affected the825

most by the boundary implementation. In the following sec-826

tions, we test the different boundary conditions in SPH using827

MMS.828

1. Dirichlet boundary condition829

In this testcase, we construct the MS for boundary condition830

as discussed in section IV. In order to set the homogenous831

boundary condition at y = 1, we modify the MS in eq. (32) as832

u =(y−1)sin(2πx)cos(2πy)

v =− (y−1)sin(2πy)cos(2πx)

p =(y−1)(cos(4πx)+ cos(4πy))

(40)833

Clearly, at y = 1 we have boundary values u = v = p = 0. In834

SPH, the Dirichlet boundary may be applied by setting the de-835

sired value of the property on the ghost layer shown in orange836

in fig. 16. We set homogenous velocity and pressure bound-837

ary conditions in two separate testcases and refer to them as838

velocity BC and pressure BC, respectively. We set the pres-839

sure/velocity on the solid using the MS when we set veloc-840

ity/pressure using the SPH method. We simulate the problem841

for 100 timesteps with the MS in eq. (40).842

FIG. 17. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (40) 100 timesteps for L-

IPST-C and velocity BC and pressure BC applied at the orange

boundary in fig. 16.
843

844

In fig. 17, we plot the L∞ error in pressure and velocity as845

a function of resolution for L-IPST-C, velocity BC, and pres-846

sure BC. Clearly, both the boundary conditions introduce er-847

ror in the solution. The error introduced due to Velocity BC848

remains around second-order in pressure and first-order in ve-849

locity. The pressure BC is rarely used in SPH and introduces850

a significant amount of error with almost zero order conver-851

gence.852

2. Slip boundary condition853

In the SPH method, the slip boundary condition can be ap-854

plied using the method proposed by Maciá et al. 46 . First, we855

extrapolate the velocity of the fluid to the solid using856

us =
∑u fWs f

∑ j Ws f

, (41)857

where us and u f denotes the velocity of wall and fluid par-858

ticles, respectively. Then, we reverse the component of the859

velocity normal to the wall. This method ensures that the di-860

vergence of velocity is captured accurately near the slip wall.861

Therefore, we consider the inviscid MS given by862

u(x,y) =(y−1)2
sin(2πx)cos(2πy)

v(x,y) =− sin(2πy)cos(2πx)

p(x,y) =(y−1)(cos(4πx)+ cos(4πy))

(42)863

We note that the u velocity is symmetric across y = 1 and v864

velocity is asymmetric. We consider the domain as shown in865

fig. 16 and apply the free slip boundary condition on the solid866

boundary shown in orange color for the L-IPST-C scheme.867

We refer to this method as slip BC. We note that the pressure868

and density on the solid is set using the MS. We simulate the869

problem for 100 timesteps. In fig. 18, we plot the L1 error in870

FIG. 18. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (42) after 100 timesteps for

L-IPST-C and slip BC applied on the orange boundary in fig. 16.
871

872

pressure and velocity as a function of resolution for L-IPST-C873

and slip BC schemes. Clearly, the application of slip boundary874

condition increases the error and the order of convergence is875

less than one. In the case of the L-IPST-C scheme, the lower876

resolutions show first order convergence but as the resolution877

increases approaches second-order. We note that the fig. 18878

shows the L∞ error, however convergence of the L1 error is879

close to second-order for all resolutions. In summary, the slip880

boundary condition as proposed in 46 is accurate in velocity881

but reduces the accuracy of the pressure.882

3. Pressure boundary condition883

In the pressure boundary condition proposed by Maciá884

et al. 46 , we ensure that the pressure gradient normal to the885
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 14

boundary is zero. We apply the boundary condition by setting886

the pressure of the solid boundary particles using887

ps =
∑ p fWs f

∑ j Ws f

, (43)888

where ps and p f denotes the pressure of wall and fluid parti-889

cles, respectively. For simplicity, we ignore the acceleration890

due to gravity and motion of the solid body. We consider the891

MS of the form892

u(x,y) =y2 sin(2πx)cos(2πy)

v(x,y) =− sin(2πy)cos(2πx)

p(x,y) =(y−1)2 (cos(4πx)+ cos(4πy))

(44)893

Clearly, the MS satisfies
∂ p
∂y

= 0 at y = 1. We consider the894

domain as shown in fig. 16 and apply the pressure boundary895

condition on the solid boundary shown in orange color for L-896

IPST-C scheme. We refer to this method as Neumann BC. We897

simulate the problem for 100 timesteps.898

FIG. 19. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (44) after 100 timesteps

for L-IPST-C and Neumann BC applied on the orange boundary in

fig. 16.
899

900

In fig. 19, we plot the L∞ error in pressure and velocity for901

L-IPST-C and Neumann BC. The results show that the pres-902

sure boundary condition is second order convergent.903

4. No-slip boundary condition904

Maciá et al. 46 proposed the no-slip boundary condition for905

SPH where we set the wall velocity as906

us = 2uw − ũs, (45)907

where uw is velocity of the wall and ũs is the Shepard inter-908

polated velocity (see eq. (41)). In the no-slip boundary, we909

ensure that ∂u
∂y

= 0 at y = 1 therefore, we use the MS for vis-910

cous flow given by911

u(x,y, t) =(y−1)2
e−10t sin(2πx)cos(2πy)

v(x,y, t) =− (y−1)2
e−10t sin(2πy)cos(2πx)

p(x,y, t) =(cos(4πx)+ cos(4πy))e−10t

(46)912

We consider the domain as shown in fig. 16 and apply the913

pressure boundary condition on the solid boundary shown914

in orange color for the L-IPST-C scheme. We refer to this915

method as no-slip BC. We simulate the problem for 100916

timesteps with ν = 1.0m2/s.917

FIG. 20. The error in pressure (left) and velocity (right) with fluid

particles initialized using the MS in eq. (44) after 100 timesteps for

L-IPST-C and no-slip BC applied on the orange boundary in fig. 16.
918

919

In fig. 20, we plot the L∞ error in pressure and velocity for920

100 timesteps. Clearly, the no-slip BC shows increased error921

and a zero-order convergence. However, it does not introduce922

error in the pressure.923

Thus in this section, we have demonstrated the MMS for924

obtaining the order of convergence of boundary condition im-925

plementations in SPH.926

G. Convergence and extreme resolutions927

Thus far we have used particle resolutions in the range928

10−3 ≤ ∆s ≤ 2× 10−2. We wish to study the convergence of929

the scheme when much higher resolutions are considered. We930

consider a domain of size 1×1 with uniformly distributed par-931

ticles as shown in fig. 21. In order to reduce computation, we932

reduce the size of the domain by half if the number of particles933

crosses 1M. In the fig. 21, the red box shows the domain con-934

sidered for the computation which one million particles with935

∆s = 1.25× 10−4. In order to obtain an unbiased error esti-936

mate we consider same MS and the domain shown by black937

box in fig. 21 to evaluate L∞ error using eq. (39).938

We first consider the MS given in eq. (30). We solve the939

eq. (23) using the L-IPST-C scheme for all the resolutions940

with ν = .01m2/s. We consider the case where we do not941

correct the kernel gradient in the discretization of eq. (23) in942

the L-IPST-C scheme.943

In fig. 22, we plot the error in pressure and velocity solved944

using L-IPST-C scheme with kernel gradient corrected, after945

100 timesteps as a function of resolution for h∆s = 1.2 and946

h∆s = 1.4. Clearly, We obtain second order convergence. In947

fig. 23, we plot the error for the case where we do not em-948

ploy kernel gradient correction. Clearly, the discretization er-949

ror dominates.950

We also consider the MS containing a range of frequencies951
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 15

FIG. 21. The domain filled by blue fluid particles. The red box

shows the smallest domain considered for the highest resolution of

8000× 8000 and the black box shows the area which is considered

to evaluate error for all the resolutions.

FIG. 22. The error in pressure (left) and velocity (right) as a function

of resolution for two different h∆s values with the MS in eq. (30).

All cases are solved using L-IPST-C scheme with kernel gradient

correction.

FIG. 23. The error in pressure (left) and velocity (right) as a function

of resolution for two different h∆s values with the MS in eq. (30).

All cases are solved using L-IPST-C scheme with no kernel gradient

correction.

given by952

u(x,y, t) =y2e−10t
10

∑
j=1

sin(2 jπx)cos(2 jπy)

v(x,y, t) =− e−10t
10

∑
j=1

sin(2 jπy)cos(2 jπx)

p(x,y, t) =e−10t
10

∑
j=1

cos(4 jπx)+ cos(4 jπy).

(47)953

We simulate the eq. (6) using L-IPST-C scheme for the above954

MS. As before, we also consider the case where we do not955

employ kernel correction.956

FIG. 24. The error in pressure (left) and velocity (right) as a function

of resolution for two different h∆s values with the MS in eq. (47).

All cases are solved using L-IPST-C scheme with kernel gradient

correction.

FIG. 25. The error in pressure (left) and velocity (right) as a function

of resolution for two different h∆s values with the MS in eq. (47).

All cases are solved using L-IPST-C scheme with no kernel gradient

correction.

In fig. 24, we plot the error in pressure and velocity solved957

using L-IPST-C scheme with kernel gradient correction for958

100 timesteps as a function of resolutions. Clearly, both the959

cases shows second-order convergence. In fig. 25, we plot the960

error in pressure and velocity for the solution obtained using961

L-IPST-C scheme with no kernel correction. As can be seen962

the kernel correction is essential in order to obtain second-963

order convergence at high resolutions.964

We have therefore shown that we can consider very high965

resolutions using the MMS technique. This enables us to find966
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How to train your solver: A method of manufactured solutions for weakly-compressible smoothed particle hydrodynamics 16

flaws in the scheme which may not converge at very high reso-967

lution. These are hard to test using traditional methods where968

an actual problem is solved.969

H. Verification in 3D970

We now use the MMS to verify a three dimensional solver.971

Since the number of particles in three-dimensions increase972

much faster than in two-dimensions, we can reduce the do-973

main size with resolution as done while dealing with extreme974

resolutions. We consider a unit cube domain size with 1 mil-975

lion particles. As we increase the resolution, we decrease the976

size of the domain such that the number of particles in the977

domain remains at 1 million. We consider the MS given by978

u(x,y,z, t) =y2e−10t sin(π (2x+2z))cos(π (2x+2y))

v(x,y,z, t) =− e−10t sin(π (2y+2z))cos(π (2x+2y))

w(x,y,z, t) =− e−10t sin(π (2x+2z))cos(π (2y+2z))

p(x,y,z, t) =(cos(π (4x+4y))+ cos(π (4x+4z)))e−10t .
(48)

979

We obtain the source term by subjecting the MS in eq. (48)980

to the governing equation in eq. (6) with ν = 0.01m2/s. We981

simulate the problem for 10 timesteps.982

FIG. 26. The L∞ error in pressure (left) and velocity (right) after 10

timesteps as a function of resolution solved using L-IPST-C scheme

with and without kernel correction. The source term are calculated

using the MS in eq. (48).

In fig. 26, we plot the L∞ error in pressure and velocity as983

a function of resolution for L-IPST-C scheme with and with-984

out kernel correction. As expected, the case with no kernel985

correction gradually flatten due dominance of discretization986

error. The case with kernel correction shows second order987

convergence in both pressure and velocity. Thus we see that988

we can easily test the SPH method in a three-dimensional do-989

main using the MMS.990

VI. DISCUSSION991

We have used the MMS to verify the convergence of differ-992

ent WCSPH schemes. Thus far, most of the numerical stud-993

ies of the accuracy and convergence of the WCSPH method994

have used either an exact solution like the Taylor-Green vor-995

tex problem, or with an established solver, or experimental re-996

sult. These methods are therefore limited in their ability to de-997

tect specific problems in an SPH implementation. This is true998

even in the recent work of Negi and Ramachandran 24 where999

a Taylor-Green problem and a Gresho-Chan vortex problem1000

is used. These are complex problems and obtaining a solu-1001

tion to these involves a significant amount of computation.1002

Moreover, if the results do not produce the expected accuracy1003

or convergence, the researcher does not obtain much insight1004

into the origin of the problem. Furthermore, the established1005

approaches do not offer any means to study the accuracy of1006

boundary condition implementations.1007

In this context, the proposed approach offers a multitude of1008

advantages listed and discussed below:1009

• The method is highly efficient in terms of execution1010

time. We are able to detect problems in the implementa-1011

tions of specific discretization operators in less than 1001012

iterations. Even for our most challenging cases with a1013

million particles, the typical run time for a single com-1014

putation on a multi-core CPU does not exceed a few1015

minutes. On the other hand, the comparison study for1016

the lid-driven cavity case in section III took 150 minutes1017

for the 200×200 resolution.1018

• The method easily works in three dimensions and1019

we demonstrate its applicability for a simple three-1020

dimensional case. This is significant because traditional1021

SPH verifications only use two-dimensional problems.1022

• We can effectively test the boundary condition imple-1023

mentations through this method. In this work we have1024

demonstrated this for Dirichlet and Neumann boundary1025

conditions in both pressure and velocity.1026

• The method allows us to identify very specific problems1027

with a solver. Through a judicious choice of MS and1028

time integrator, we can identify if the implementation of1029

a specific governing equation is the source of a problem.1030

We have demonstrated this with several examples in the1031

preceding sections.1032

• We are able to verify the order of convergence effi-1033

ciently even for very high resolutions and thereby test if1034

the scheme is truly second order convergent as the res-1035

olution increases. In the present work we have demon-1036

strated this for extremely high resolutions (involving1037

8000× 8000 particles) without needing to simulate the1038

problem for a long duration and also limiting the num-1039

ber of computational particles to a smaller number.1040

• The method will work on any manufactured solution1041

and this allows us to test the scheme with functions in-1042

volving a large range of frequencies. In contrast, many1043

exact solutions involve simple functional forms. There-1044

fore by using the MMS the solver can be tested with a1045

more challenging class of problems.1046

As a result of these significant advantages, the proposed1047

method offers a robust, efficient, and powerful method to ver-1048

ify the accuracy and convergence of SPH schemes.1049
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VII. CONCLUSIONS1050

In this paper we propose the use of the method of manufac-1051

tured solutions (MMS) in order to verify an SPH solver. While1052

the MMS technique is well established in the context of mesh-1053

based methods7, to the best of our knowledge it does not ap-1054

pear to have been employed in the context of Lagrangian SPH1055

schemes thus far. The application of MMS to Lagrangian SPH1056

method is non-trivial as the particles move.1057

In the present work we show for the first time how the1058

method can be employed to verify the accuracy of any modern1059

weakly-compressible SPH scheme. Specifically, we note that1060

for successful application of the MMS, quantities like gradient1061

of velocity should be evaluated using the scheme and not with1062

the gradient of the MS. In this paper, we apply PST to restrict1063

the particles to remain inside the domain boundaries allowing1064

us to apply MMS to arbitrary shaped boundaries without the1065

need for addition and deletion of particles. We compare differ-1066

ent initial particle distributions used in SPH to obtain a mini-1067

mum number of iterations required for a result independent of1068

initial distribution. We also show that one should not use a di-1069

vergence free velocity field while using MMS in SPH for ver-1070

ification. We compare the EDAC and the PE-IPST-C schemes1071

and show that the density should be used as a property inde-1072

pendent of the neighbor particle distribution. We show that1073

the method works in arbitrary number of dimensions, allows1074

us to systematically identify problems quickly in specific dis-1075

cretizations employed by the scheme, and makes it possible1076

to verify the accuracy of boundary condition implementations1077

as well. We also demonstrate that the recently proposed fam-1078

ily of second order convergent WCSPH schemes24 are indeed1079

second order accurate. Finally, our implementation is open1080

source (https://gitlab.com/pypr/mms_sph) and our nu-1081

merical experiments and results presented are fully automated1082

in the interest of reproducibility. Given that convergence and1083

accuracy of SPH schemes is a grand-challenge problem in the1084

SPH community6, the present work offers a valuable contri-1085

bution.1086

In the future, we propose to use this method to study the1087

accuracy and convergence of the method in the context of the1088

various solid boundary conditions proposed in SPH. Using the1089

method in the context of inlet and outlet boundary conditions1090

and for free-surfaces may prove challenging and remain to be1091

explored. The method may also be applied in the context of in-1092

compressible SPH, compressible SPH, and multi-phase SPH1093

schemes. We plan to explore these problems in the future.1094
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